

© 2023 EasternGraphics GmbH Notes on OAP data creation 1/39

Application Note (2023-11-07)

Notes on OAP Data creation

Contents

1 General .. 3

1.1 Extensions in table structures / EBase ... 3
1.2 Separate series for OAP data ... 3
1.3 Name conventions for identifiers .. 3

2 Conditions/Expressions ... 4

2.1 OAP expressions vs. OCD expressions ... 4
2.2 Using standard methods .. 4
2.3 Article at top planning level? ... 5
2.4 Numerical metaproperties .. 5
2.5 Special Symbols ... 5
2.6 Expressions with integers .. 6

3 Interactors ... 7

3.1 Recommendations for using the 3 abstract symbol sizes ... 7
3.2 Interactor for planning group or group elements? ... 7
3.3 Dynamic interactors .. 8
3.4 3D interactor symbols ... 11
3.5 Correct configuration context?.. 13

4 Actions... 14

4.1 Creating articles via xOiCreateArticle() .. 14
4.2 Change direction in DimChange actions .. 14
4.3 Nesting of method calls ... 14
4.4 Notes on DeleteObj.. 15
4.5 RG properties ... 16
4.6 Action type NoAction ... 16

5 Planning groups ... 17

5.1 Using object category MethodCall .. 17
5.2 Changing dimensions of group elements .. 18
5.3 Dimension change based on na-Metaproperties .. 21
5.4 Group-specific entries in the control data table .. 22
5.5 Changing articles via replaceElement() .. 22
5.6 Non-Layout articles with xOiJointPlGroup ... 22
5.7 Additional start elements .. 23
5.8 Removability of group elements ... 23
5.9 Common properties / Group properties ... 24
5.10 Persistency ... 29
5.11 Overriding methods of XOI base classes.. 31
5.12 Managing the property state of group elements .. 31
5.13 Reaction to property changes of elements ... 33
5.14 Collision detection ... 34

6 OFML-Debugging ... 36

6.1 Debugging the xOiOAPManager .. 36

© 2023 EasternGraphics GmbH Notes on OAP data creation 2/39

6.2 Debugging CreateObj ... 36
6.3 Usage of xOiOAPManager::setDBMode() .. 37

7 Miscellaneous ... 38

7.1 EBase for control data tables ... 38
7.2 Metatype-Type-Mapping ... 38

Appendix ... 39

A.1 Document history .. 39

References

[an0601] Application Note on Control Data Tables (AN-2006-01). EasternGraphics GmbH

[article] The OFML Interfaces Article und CompositeArticle (Specification). EasternGraphics GmbH

[methods] Useful OFML methods for OAP data. EasternGraphics GmbH

[oap] OAP – OFML Aided Planning, Version 1.5. EasternGraphics GmbH

[ocd] OCD – OFML Commercial Data (Version 4.3). EasternGraphics GmbH

[ofml] OFML – Standardized Data Description Format of the Office Furniture Industry.

 Version 2.0, 3rd revised edition.

 Industrieverband Büro- und Arbeitswelt e.V. (IBA)

[property] The OFML Interface Property (Specification). EasternGraphics GmbH

[xoi] XOI – Library extending the basic OFML implementation library OI (Documentation).

EasternGraphics GmbH

Except [xoi], the specifications are available via the pCon Download Center

https://download-center.pcon-solutions.com

in the category OFML Specifications.

Legal remarks

© 2023 EasternGraphics GmbH | Albert-Einstein-Straße 1 | 98693 Ilmenau | GERMANY

This work (whether as text, file, book or in other form) is copyright. All rights are reserved by

EasternGraphics GmbH. Translation, reproduction or distribution of the whole or parts thereof is permitted only

with the prior agreement in writing of EasternGraphics GmbH.

EasternGraphics GmbH accepts no liability for the completeness, freedom from errors, topicality or continuity of

this work or for its suitability to the intended purposes of the user. All liability except in the case of malicious

intent, gross negligence or harm to life and limb is excluded.

All names or descriptions contained in this work may be the trademarks of the relevant copyright owner and as
such legally protected. The fact that such trademarks appear in this work entitles no-one to assume that they
are for the free use of all and sundry.

https://download-center.pcon-solutions.com/

© 2023 EasternGraphics GmbH Notes on OAP data creation 3/39

1 General

1.1 Extensions in table structures / EBase

In the course of the further development of OAP, it occasionally comes to extensions (changes) of already used

tables resp. to the definition of new tables. This necessarily causes the release of a new format version (minor or

major)1. In order to ensure correct processing of the OAP data, the used format version has to be stored in table

Version.

With each new major resp. minor version of OAP also a corresponding new EBase table description file

oap_<major>_<minor>.inp_descr is provided.

1.2 Separate series for OAP data

By means of key oap_program in the registration file of an OFML series, another series can be referenced in

which the OAP data for the articles of the OFML series are located.

In the following situations it is necessary or advisable to create the OAP data in a separate series:

• The OAP data refers to articles from several OFML series.

• Planning groups are used in the OAP project.

The easiest way to integrate a planning group into the catalog is to create an own (pseudo) article in the

OCD data2. (In any case, an own article for the planning group is required if OAP interactors are bound

to it.) In most cases, it does not make sense to include the article for the planning group(s) together

with the actual articles in a single OCD database unless there is such a close coupling between OCD

data and OAP data that also a simultaneous distribution is indicated.

• The OAP data changes more frequently3 or in a different rhythm than the OFML data, and the manu-

facturer's distribution processes allow for a separate distribution of the OAP data.

• OFML data and OAP data are created or maintained (in parallel) by different persons4.

1.3 Name conventions for identifiers

In most tables, identifiers (field type ID) are used as access keys. As long as there is no application for OAP data

creation, these keys must be manually defined. For a quicker orientation in the tables5 it is recommended to

mark the purpose of an identifier with a standardized prefix. The "OAP style guide" contains corresponding rec-

ommendations.

1 Conversely, a new minor version can also contain only enhancements that do not require any changes in the table structures
(e.g., new interactor symbols).
2 usually without price and properties, but possibly with an article short text
3 which is probably true for the early stages of most OAP projects
4 in the case of OAP e.g. by an external partner
5 both for the person creating the data, but also for support staff

© 2023 EasternGraphics GmbH Notes on OAP data creation 4/39

2 Conditions/Expressions

2.1 OAP expressions vs. OCD expressions

The syntax of expressions in OAP differs from the syntax in OCD expressions [ocd]. Those who have only created

OCD data so far have to retrain a bit in this regard. (However, programmers who have already used the OFML

programming language should not have any major difficulties since the syntax is very similar.)

OAP expressions are described in detail in appendix A of the OAP specification. For the start, focus on section

A.4. For a quicker switch from OCD to OAP, here is an overview of the operators used in conditions (logical

expressions):

Operator OCD OAP

OR relation OR ||

AND relation AND &&

Is lower than < (LT) <

Is lower equal <= (LE) <=

Is equal = (EQ) ==

Is not equal <> (NE) !=

Is greater equal => (GE) >=

Is greater than > (GT) >

It should also be noted that expressions in OCD operate with OCD characteristics, whereas expressions in OAP

operate with OFML properties. This particularly affects OCD characteristics with data type C (Char): if a list of

values is associated with these characteristics, the values of the OFML properties generated for these character-

istics are symbols (rather than character strings). For comparison, here two conditions in OCD and OAP identical

in content:

OCD: Legs = 'ALU'

OAP: Legs == @ALU

Another significant difference is the representation of string literals (constants): in OCD, these are enclosed in

single quotation marks (see example above), in OAP, however, in double quotation marks ("ALU").

2.2 Using standard methods

In expressions (to determine the position of interactor symbols or to formulate conditions for interactors or

actions), the use of project-specific implemented methods should be avoided as far as possible, using property

values and/or standard methods instead.

The accompanying document „Useful OFML methods for OAP data“ [methods] describes useful standard

methods.

Following section provides an example of the usage of standard methods.

© 2023 EasternGraphics GmbH Notes on OAP data creation 5/39

2.3 Article at top planning level?

In OAP data creation, there is often a requirement that certain interactors are not valid (should not be displayed)
if the article in question is at the top planning level, i.e., if it is not a sub-article of a composite article6.

Instead of programming a special method in the (specific) class of the article that checks this condition, standard
methods getFather() and getRoot()7 should be used.

oap_methodcall.csv:

MC_GET_FATHER;Instance;@IF_Base;getFather;

MC_GET_ROOT ;Instance;@IF_Base;getRoot ;

With corresponding actions (table Action) the condition in table Interactor can be formulated as follows:

methodCall("AC_call_GET_FATHER") != methodCall("AC_call_GET_ROOT")

or if it is to be linked to a condition for the case that the article is a sub-article of a composite article:

methodCall("AC_call_GET_FATHER") == methodCall("AC_call_GET_ROOT") ? 0 : <condition>

2.4 Numerical metaproperties

Properties for selecting a value from a list of integers or floating-point numbers created in the metadata (table

go_types), using formats chi and chf respectively, for historical/technical reasons return the character string

representation of the current value via the Property interface, e.g., instead of the number 1200 the string

"1200".

Thus, these properties cannot be used directly in OAP in expressions for comparison with numeric values or for

determining a coordinate for the position of interactor symbols! Instead, functions int() and float() have to be

used to convert the string value into an integer or a floating-point number.

2.5 Special Symbols

Occasionally, in expressions Symbols have to be specified that cannot be represented as a Symbol literal in nor-

mal form. The alternative known from OFML of using the constructor Symbol() is not applicable in OAP!

Instead, the conversion function symbol() or the alternative form to represent a Symbol literal (see appendix

A.3.2 in the OAP specification) have to be used.

An example for a PropChange action:

PC_SET_OPT_WITHOUT;Value;OPT;symbol("---")

or

PC_SET_OPT_WITHOUT;Value;OPT;@"---"

6 e.g., of a planning group (see section 5)
7 For the meaning of these both methods see [methods] or [ofml].

© 2023 EasternGraphics GmbH Notes on OAP data creation 6/39

2.6 Expressions with integers

The behavior described in appendix A.4.10 of the OAP specification regarding binary arithmetic operators has a

small "pitfall" when using integer operands (type Int), especially in division:

"If both operands have a numeric type and at least one operand has type Float, the other operand,

if necessary, is converted to Float and the calculation is performed in Float. The result then also

has type Float. Otherwise, the result has the same type like both operands."

In other words: If both operands have type Int, the result also has type Int. As a consequence in division, the

possibly occurring non-integer remainder of the division is omitted!

This is particularly important in expressions for positions of interactor symbols (table NumTripel) using properties

of type "i"!

Example:

The active object has a property DEPTH of type "i", which indicates the current depth of the object in millimeters.

The interactor symbol has to be placed centered in depth. Since the corresponding Z coordinate has to be given

in meters, possibly the following expression would be specified:

DEPTH / 2000

At a current depth of e.g. 650 mm, the expression returns 0 instead of the desired 0.325!

Therefore, the expression must be written as follows:

DEPTH / 2000.0

Or the expression is transformed into a multiplication:

DEPTH * 0.0005

© 2023 EasternGraphics GmbH Notes on OAP data creation 7/39

3 Interactors

3.1 Recommendations for using the 3 abstract symbol sizes

large Interactors for planning groups

medium Actions, referring to top-level objects or elements of planning groups

small Actions, referring to child objects (sub-articles)

3.2 Interactor for planning group or group elements?

If a planning group (section 5) is used in the OAP project, certain actions can be triggered both via an interactor

at the group instance and via interactors at the elements.

A typical example is adding and removing elements. Usually this is allowed only at certain places

(elements) of the layout. The interactors with the corresponding actions could be displayed for

the elements where the action is possible. However, it would also be possible for the group in-

stance itself to place the interactors at the allowed locations (elements).

When making a decision, aspects of user guidance as well as the respective efforts have to be considered and

weighed against each other (if necessary, in consultation with the client). Here are some considerations for

decision-making.

From the user's point of view, interactors bound to group elements are problematic because they are visible

only when the user has selected the element in question. However, the inexperienced user often is not even

aware that he must first select elements in order to be able to perform certain actions. Furthermore, in the

scenario of adding a new element (see above), the user often wants to continue adding to the new element and

must first select it again.

On the other hand, many interactors bound to the group can lead to oversaturation and, when the viewer is

further away, to unsightly overlapping effects. In order to avoid or reduce the oversaturation of the group, a

compromise could be that interactors, which would only be visible/valid for certain elements (see example

above), are bound to the group. In contrast, interactors that are valid for (almost) all elements are bound directly

to them.

Element-related interactors (actions) bound to the group usually imply more effort, since the positions for the

interactor symbols have to be determined based on the position (and rotation) of the respective element within

the group (for which appropriate methods have to be implemented in the project-specific class for the planning

group). Further effort arises if the group instance itself does not have the required functionality (property,

method) to perform the desired action. In this case, methods have to be implemented in the project-specific

class, that use (call up) the corresponding functionality of the concerned element.

In the case of interactors bound the elements, on the other hand, there may be an effort involved in creating the

validity condition if the interactor has to be visible only for certain elements8. Here, however, often existing

8 This corresponds to the above-mentioned recommendation from the user's point of view to rather bind these interactors
to the group

© 2023 EasternGraphics GmbH Notes on OAP data creation 8/39

standard methods can be used, i.e., the creation of these conditions may not require any project-specific pro-

gramming.

If the decision has been made to perform certain element-related actions via interactors bound to the group, but

the number of possible interactors and the positions of the interactor symbols are difficult to predict/manage,

the use of dynamic interactors can/should be considered.

Tip:

According to the recommendation from the previous section, interactors of the planning group that refer to

individual elements should have a smaller symbol size than the interactors that actually refer to the group as a

whole.

3.3 Dynamic interactors

They are realized by implementing the (parameter less) method getDynamicOAPInteractors() in the class of the

relevant article instance (planning group)9. The method is called by the application when the instance is selected

and after processing the actions of an activated interactor10. The interactors supplied by the method then are

displayed in addition to the currently valid static interactors.

The return value of the method must be of OFML type List, whose elements are of type Vector (each) containing

the following 2 elements:

1. Interactor ID (String)

2. Interactor information (Vector)

The ID for a dynamic interactor can be defined freely, but it must be unique and must not match the ID of a static

interactor!

The Interactor information in the second element contains the following elements:

1. NeedsPlanMode (Int)

2. Action IDs (String[])

3. SymbolType (Symbol)

4. SymbolSize (Symbol)

5. SymbolDisplay information (Vector)

Elements 1-4 correspond to the according fields in OAP table Interactor.

The elements in the SymbolDisplay information (element 5) again are of type Vector each defining a symbol using

the following elements (which correspond to the according fields in OAP table SymbolDisplay):

1. HiddenMode (Int)

2. Offset (Float[3])

3. Direction axis (Float[3] | Void)

4. ViewAngle (Float | Void)

5. Orientation X (Float[3] | Void)

9 i.e., theoretically also are possible with "normal" articles
10 see also method xOiOAPManager::getInteractors(), section 6.1

© 2023 EasternGraphics GmbH Notes on OAP data creation 9/39

Notes:

• Since there is no element for a validity condition, the method must/may supply only those interactors

that are valid at the time the method is called.

• The data for the specified actions has to be provided/contained in the OAP database. For further notes

on this point see below.

• SymbolType and SymbolSize must be specified as a Symbol, whose value corresponds to the identifier

of the desired symbol type resp. the desired symbol size grade according to the OAP specification.

• Elements NeedsPlanMode and HiddenMode must not contain expressions, but have to be specified as

an explicit Boolean value (0 or 1).

• Float values must be specified explicitly, i.e. no expressions are allowed (and the ID of an entry in the

table NumTripel cannot be used either).

As noted in the 2nd point above, the actions of the dynamic interactor have to be specified in the OAP data. If

an action is semantically identical for all relevant planning elements, placeholder $INTERACTOR can be used.

Otherwise, a separate action would have to be created for each relevant planning element with the appropriate

target object (object category MethodCall) or an appropriate object as argument of a MethodCall action. With

an arbitrary or unknown number of relevant elements this is practically impossible.

The basic idea of using the placeholder $INTERACTOR is to build up the ID of a dynamic interactor defined for a

given element in such a way that the relevant element can be retrieved from it. This can be done, e.g.11, by

encoding the local object name of the element within the group into the ID of the interactor. For this purpose

methods localObjName() and localName2Obj() are available in the base class xOiPlGroup for all types of planning

groups, see example.

The example shows the implementation of dynamic interactors in a planning group class derived from

type xOiJointPlGroup), which should allow to change the length of each layout element by means of a PropEdit

action:

oap_object.csv:

OB_self;Self;;;

OB_dynID;MethodCall;AC_call_getElemByDynIID;;

oap_action.csv:

AC_PE_Length;;PropEdit;PE_Length;OB_dynID

AC_call_getElemByDynIID;;MethodCall;MC_getElemByDynIID;OB_self

oap_methodcall.csv:

MC_getElemByDynIID;Instance;::foo::bar::barPlGroup;getElemByDynIID;$INTERACTOR

11 Another possibility would be to encode the index of the element in the list of layout elements into the ID of the interactor.

© 2023 EasternGraphics GmbH Notes on OAP data creation 10/39

barplgroup.cls:

 static var sIA_PE_Length_ID_Prefix = "IA_PE_Length_";

 public func getDynamicOAPInteractors()

 {

 var tRet = @();

 var tEl;

 foreach(tEl; self.getElOrder()) {

 var tIID = sIA_PE_Length_ID_Prefix + self.localObjName(tEl);

 var tPos = self.getEditInteractorPos(tEl);

 var tDisplayInfo = [0, tPos, NULL, NULL, NULL];

 var tData = [tIID, [0, ["AC_PE_Length"], @Edit, @small, [tDisplayInfo]]];

 tRet.pushBack(tData);

 }

 return(tRet);

 }

 private func getEditInteractorPos(pEl)

 {

 // position above the element in the middle of x dimension

 var tOffset = 0.05;

 var tLBB = pEl.getLocalBounds();

 var tX = tLBB[0][0] + (tLBB[1][0]-tLBB[0][0])/2;

 var tY = tOffset;

 var tZ = 0.0;

 return(xOiTransformObjCoords(pEl, [tX, tY, tZ], self));

 }

 public func getElemByDynIID(pIID)

 {

 var tName = pIID.substr(sIA_PE_Length_ID_Prefix.size());

 return(self.localName2Obj(tName));

 }

Note:

Currently, object category MethodCall is not permitted for the target object of an action whose ID is used as the

argument of a call to function methodCall() (see [oap]).

Therefore, the object ID OB_dynID defined in the example above cannot be used for target objects of actions

that are used as arguments of methodCall() expressions in conditions!

Assume that in the example above, in addition to the PropEdit action, an ActionChoice action with a selection of

objects to be added is to be applied, where the selection depends on the currently selected group element.

Method canAddObject(pType) of the class of the group element is to be used to determine whether a specific

object from the possible selection list can be added to the selected group element.

The condition for an option in table ActionList would then be formulated as follows:

methodCall("AC_call_canAddObj_<type>")

As object category MethodCall cannot be used for the target object of these actions, the method call must not

be made directly on the group element. Instead, a method (of the same name) of the planning group class must

be called, which in turn calls the method on the relevant group element. In doing so, placeholder $INTERACTOR

and method getElemByDynIID() described above are used:

© 2023 EasternGraphics GmbH Notes on OAP data creation 11/39

oap_action.csv:

AC_call_canAddObj_<type>;;MethodCall;MC_canAddObj_<type>;OB_SELF

oap_methodcall.csv:

MC_canAddObj_<type>;Instance;::foo::bar::barPlGroup;canAddObject;$INTERACTOR,<type>

barplgroup.cls:

 public func canAddObject(pIID, pType)

 {

 var tRet = 0;

 var tEl = getElemByDynIID(pIID);

 if (tEl != NULL)

 tRet = tEl.canAddObject(pType);

 return tRet;

 }

3.4 3D interactor symbols

In the case of interactor symbols which illustrate the effective direction of the action associated with the interac-

tor by means of an arrow, the implementation as a 3D symbol should be considered.

Example:

On the right side of an object there is an interactor with symbol type ChangeDim2Right, linked to an action which

increases the width of the object.

A "normal" 2D symbol, which always is displayed parallel to the screen plane, would always point to the right.

This would illustrate the correct direction of the action to the user (in the case of a non-rotated object) only when

viewed from front or from above.

Since for 3D symbols the plane has to be specified in which the (flat) symbol icon is to be located for 3D, one has

to decide on a view that is most suitable to deal with the object:

• For objects with a low height, the top view is usually the most suitable, i.e., the symbol icon then has to

lie in the X-Z plane of the object.

• In the case of objects with a shallow depth, the front or rear view is usually the most suitable, i.e., the

symbol icon then has to lie in the X-Y plane of the object.

A 3D symbol intended for the top view would be defined as follows12:

oap_numtripel.csv:

NT_RightSide;LENGTH * 0.001;0.0;0.0

NT_POS_X_AXIS; 1.0; 0.0;0.0

NT_POS_Y_AXIS; 0.0; 1.0;0.0

NT_NEG_Y_AXIS; 0.0;-1.0;0.0

oap_symboldisplay.csv

IA_RESIZE;0;Tripel;NT_RightSide;NT_POS_Y_AXIS;360;NT_POS_X_AXIS

12 see also figure 2 in section 4.6 of the OAP specification

© 2023 EasternGraphics GmbH Notes on OAP data creation 12/39

Explanation:

The direction vector of the visibility range (NT_RightSide, field 5) runs along the positive Y axis (top view).

Thus, the 3D symbol lies in the X-Z plane of the object and, due to the entry in field 7, always is oriented along

the positive X axis of the local coordinate system of the object.

Notes on the opening angle in field 6

Without specifying an opening angle (empty field 6), no visibility area is defined, which means that the possibly

existing entry in field 5 does not take effect for the direction vector. The result would be a normal 2D symbol! If

the visibility range actually is not to be restricted, an opening angle of 360 degrees must be specified, as in the

example above. However, since the 3D symbol is becoming "flatter" and therefore less recognizable the closer

the viewing angle approaches the X-Z plane of the object, a restriction of the visibility range is recommended for

3D symbols, e.g.:

IA_RESIZE;0;Tripel;NT_RightSide;NT_POS_Y_AXIS;150;NT_POS_X_AXIS

IA_RESIZE;0;Tripel;NT_RightSide;NT_NEG_Y_AXIS;150;NT_POS_X_AXIS

Then, the interactor would have 2 symbols with mutually exclusive visibility ranges, which would not be visible

at a viewing angle of less than 15 degrees to the X-Z plane of the object. (The second entry can be omitted if the

interactor should be visible only when the user looks at the object from above.)

Analogous, a 3D symbol intended for the front and rear view (in the example with symbol type ChangeDim2Right)

would be defined as follows:

oap_numtripel.csv:

NT_RightSide;LENGTH * 0.001;0.0;0.0

NT_POS_X_AXIS; 1.0; 0.0; 0.0

NT_POS_Z_AXIS; 0.0; 0.0; 1.0

NT_NEG_Z_AXIS; 0.0; 0.0;-1.0

oap_symboldisplay.csv

IA_RESIZE;0;Tripel;NT_RightSide;NT_POS_Z_AXIS;150;NT_POS_X_AXIS

IA_RESIZE;0;Tripel;NT_RightSide;NT_NEG_Z_AXIS;150;NT_POS_X_AXIS

© 2023 EasternGraphics GmbH Notes on OAP data creation 13/39

3.5 Correct configuration context?

The validity condition in OAP table Interactor can resp. must be used to ensure that the interactor is only dis-
played if the current configuration context allows it.

A common requirement is that an interactor should only be displayed if the article in question is a sub-article of
a composite article, i.e., if it is not at the top planning level. This applies, for example, to the following cases:

• An Add interactor for attaching a neighbor element in the context of a planning group.
(see also section 3.2)

• All Delete interactors!
(see also section 4.4)

A typical resp. recommended solution for this requirement is described in section 2.3.

Furthermore, it must be considered that some applications have the function "Split up article"13, during the ex-
ecution of which a composite article is split up into its components, i.e., individual articles at top planning level.

If the composite article is the special case of a Meta type instance, it will no longer exist after executing the
function "Split up article"!
One consequence of this is that meta properties can no longer be accessed after splitting up. Accordingly, in-
teractors with PropEdit or PropChange actions that use meta properties then must no longer be displayed! If an
OAP type exclusively has such interactors, this can be achieved in a simple way by assigning the OAP type (ex-
clusively) to one (or more) meta types (ID) via mapping table Metatype2Type14.

13 or similar, e.g., "Break up article"
14 i.e., there should/must not be an assignment to articles (mapping table Article2Type)

© 2023 EasternGraphics GmbH Notes on OAP data creation 14/39

4 Actions

4.1 Creating articles via xOiCreateArticle()

In cases where it is not possible/sufficient to use an action of type CreateObj to create articles, and the article

creation needs to be programmed, it is recommended to use the global functions xOiCreateArticle() resp. (as of

the application releases in fall 2023) xOiCreateArticle2()15.

In default mode @extended, the functions simulate the standard process of article creation in the applications

of EasternGraphics, where the so-called checkAdd() mechanism is used to determine position and rotation of the

new article instance (including the creation of a temporary article instance).

If position and rotation of the new article instance are defined during the programmed article creation itself, the

functions should be used in mode @lite, as this offers a better performance. Then, after calling the function

position and rotation have to be assigned to the article instance returned by the function.

Like actions of type CreateObj, functions xOiCreateArticle() and xOiCreateArticle2() require the specification of a

parent article (father object) and, thus, are not suitable for insertion at the top planning level.

4.2 Change direction in DimChange actions

As of OAP 1.2, in field Dimension in table DimChange can be specified in which axis direction a change is permit-

ted. Previously, only a change in the positive direction of the respective dimension axis was possible (imple-

mented). To ensure downward compatibility, for OAP data that is created in accordance with an older OAP

version, values X, Y and Z are treated in the same way as PX, PY or PZ in accordance with OAP 1.2.

With dimensions X and Z, in most cases it makes sense to allow a change in both directions (i.e., to specify values

X resp. Z as of OAP 1.2) in order to offer the user an optimal change behavior regardless of the rotation of the

object or the camera perspective. If necessary, existing data should be ported to OAP 1.216.

4.3 Nesting of method calls

Since the arguments for a method call (table MethodCall) can be specified as expressions, it is possible to realize

nested method calls by means of the expression methodCall().

Example:

MC_METHOD_1;Instance;::foo::bar::aClass;method_1;methodCall("AC_call_METHOD_2")

15 In the XOI documentation [xoi] these functions are found in section "xOiFuncs" in sub-section "Miscellaneous utilities".
16 considering new fields Separate and ThirdDim in table DimChange

© 2023 EasternGraphics GmbH Notes on OAP data creation 15/39

4.4 Notes on DeleteObj

Of the currently supported object categories, only Self and MethodCall can be used for the target object of a

DeleteObj action17.

MethodCall is useful in the context of interactors, which are bound to planning groups (see section 5). Then the

method call can be used to determine the element of the planning group that is to be removed.

When using Self, after the DeleteObj action no further actions may follow, which again need a target object or

an object definition as a parameter, because after the action the original active object no longer exists!

(This applies not only to DeleteObj actions, but generally to all actions that lead to the removal of the active

object.)

This is problematic if, after removing the object, further actions have to be executed that perform certain checks

and, if necessary, subsequent treatments18. Such a task typically exists in the context of planning groups. If, after

all, the DeleteObj action cannot be executed in the context of an interactor bound to the planning group19, there

is no alternative but to replace the DeleteObj action with a MethodCall action for the planning group instance

(object category ParentArticle) that deletes the element and performs the subsequent examinations and treat-

ments. The element to be deleted is passed in a parameter using the placeholder $SELF:

public func delElem(pObj)

{

 self.remove(pObj);

 // do further checks and act accordingly

 ...

}

Note:
If the checks to be performed relate to the neighborhood relationships of the layout elements of the planning

group, an OAP data creator might think of calling certain methods for manipulating the internal layout structure

of the planning group instance prior to the DeleteObj action in order to obtain desired results in the neighborship

tests (exclusion of the element to be deleted). However, this is error-prone, since this requires exact knowledge

of the processes in the base classes. Since a method for performing the checks has to be created in the (derived)

class of the planning group anyway, it then can/should better be extended as described above.

17 ParentArticle and TopArticle are not possible because the active object cannot delete a superior article instance.
18 and these actions cannot be performed before the DeleteObj action
19 and, then, object category MethodCall is used to determine the element to be removed

© 2023 EasternGraphics GmbH Notes on OAP data creation 16/39

4.5 RG properties

OFML properties generated for OCD properties with scope RG can only be changed using actions of

types PropChange and PropEdit if value 1 is specified for option @NeedValuesForRGProps in control data table

epdfproductdb20.

Caution:

An assignment of a value to an RG property made possible via @NeedValuesForRGProps should not lead to a

value change of a configurable property that follows the RG property in the list of properties (due to dependen-

cies in OCD product relationships)! Otherwise, problems ("freezing") can occur when the article instance is re-

created (e.g., as part of an update)21.

4.6 Action type NoAction

An interactor is not displayed if it currently has no valid action. This may be a handicap in an early phase of project

development, when, initially, only the interactor symbols are to be created and positioned. In this case, special

dummy action type NoAction can be used, which does not require any further data to be specified.

Example:

AC_DUMMY;;NoAction;;

20 With this, the value choice list of the generated property contains all the values that are stored for the RG property in the
OCD value table. Without the option (or with value 0) the value list contains only the current value, so the property is practi-

cally read-only.
21 as RG properties are not encoded in the variant code

© 2023 EasternGraphics GmbH Notes on OAP data creation 17/39

5 Planning groups

The explanations in this section refer to the classes from the OFML base library XOI used in OAP projects to

implement planning groups22.

Useful methods of these classes that can be used directly in OAP via MethodCall actions are described in the

document [methods]. This document also contains a brief introduction to the purpose and application of the

planning classes.

Control data tables customplgroup, jointplgroup, layoutgroup resp. tabularplgroup can be used to

control some aspects of the behavior of planning groups. The possible options are described in Application Note

AN-2006-01 [an0601].

Note on the use of xOiJointPlGroup vs. xOiLayoutGroup:

In principle, a pure left-right-oriented joint planning can be realized by means of xOiLayoutGroup23. However, in

most cases the use of xOiJointPlGroup is the more "light weight" solution for such planning groups and thus

preferable. Certain requirements, which go beyond a pure left-right-oriented joint planning, within limits also

can be implemented based on xOiJointPlGroup, see sections 5.6 and 5.7.

5.1 Using object category MethodCall

In particular, in connection with planning group classes, there are some useful applications for object category

MethodCall. A common scenario is, for example, that a certain property has to be set on a group element created

via a CreateObj action. In this case, the target object for the according PropChange action cannot be determined

by means of object category Self (since this refers to the object to which the interactor is bound whose actions

currently are being executed). However, if the group element has been added to the last layout element of the

group, in the case of class xOiJointPlGroup, e.g., method lastObj() can be used for that purpose. In the classes

xOiLayoutGroup and xOiCustomPlGroup there are equivalent methods24.

For the example above, the PropChange action could be implemented as follows:

oap_object.csv:

OB_PARENT;ParentArticle;;;

OB_LAST_GROUP_OBJ;MethodCall;AC_call_LAST_OBJ;;

oap_action.csv:

AC_PC_CHANGE_A_PROPERTY;;PropChange;PC_CHANGE_A_PROPERTY;OB_LAST_GROUP_OBJ

...

AC_call_LAST_OBJ;;MethodCall;MC_LAST_OBJ;OB_PARENT

oap_methodcall.csv:

MC_LAST_OBJ;Instance;::ofml::xoi::xOiJointPlGroup;lastObj;

22 These are currently the classes xOiCustomPlGroup, xOiJointPlGroup, xOiLayoutGroup and xOiTabularPlGroup. They are
described in detail in the XOI documentation [xoi] in section "Planning Groups".
23 In this case, the group would consist of only a single branch.
24 see document [methods]

© 2023 EasternGraphics GmbH Notes on OAP data creation 18/39

Note:

A method that is used in object category MethodCall has to return an instance that represents an article25. This

requirement may not be met for special auxiliary objects within planning groups. Then, the solution is not to

execute the action directly on this auxiliary object, but to call a method on the group instance (action type

MethodCall), passing the auxiliary object as an argument to this method by means of a methodCall() expression26

(see section 4.3).

5.2 Changing dimensions of group elements

5.2.1 General

Classes xOiCustomPlGroup, xOiJointPlGroup and xOiLayoutGroup support the modification of the dimension

(width/depth) of topological27 elements of the planning group: connected elements (to the right side28) are

moved away resp. closer (to re-connect).

For that, the so-called InsertMode29 has to be set to 1 (or greater)30.

This is done via an entry

@InsertMode;;1

in the corresponding control data table.

Furthermore, in the article classes of the planning group elements, the handling of a dimension change by the

planning group has to be triggered by calling method dimensionChanged() on the planning group instance31.

Typically, a dimension change occurs when the value for certain properties is changed. Accordingly, these prop-

erties have to be handled separately in the method propsChanged() [property].

In the case of an article class derived from GoMetaType, assuming that a change of property @WidthProp results

in a change in width, a prototypical implementation of this method using the planning group class

xOiJointPlGroup would look like this:

25 The technical background for this restriction is that the clients of online apps perform some actions themselves (i.e., do not
delegate them to the server), but in turn only "know" articles (no OFML instances).
26 The same MethodCall action is used here that would also be used for object category MethodCall.
27 elements, defining the layout of the group
28 In the case of xOiLayoutGroup and xOiCustomPlGroup, the side of the changed element to be adjusted is defined by a
parameter of method dimensionChanged().
29 defined in the base class xOiPlGroup
30 For xOiCustomPlGroup, this requires (default) value 1 for option @StoreNeighborship.
31 For details (parameters) see [xoi]. In case of xOiJointPlGroup method dimensionChanged() is implemented and documented
In base class xOiLRPlGroup.

© 2023 EasternGraphics GmbH Notes on OAP data creation 19/39

public func propsChanged(pProps, pCheck)

{

 var tRet = GoMetaType::propsChanged(pProps, pCheck);

 if (!tRet) return (tRet);

 // Do nothing during meta type initialization!

 // (This would cause syntax errors due to the lack of some properties.)

 // Skip this, if the class is not derived from GoMetaType!

 if (!isMetaInitialized() || sInSetAddStateCode)

 return tRet;

 var tFather = self.getFather();

 if (pCheck && tFather.isA(xOiJointPlGroup) &&

 pProps.find(@WidthProp) >= 0 &&

 !tFather.dimensionChanged(self))

 tRet = 0;

 return(tRet);

}

For Meta properties that raise a native property of the encapsulated article instance to the level of the Meta

type instance (so-called na-properties), this does not work because a change of such a Meta property is delegated

from the Meta type instance to the encapsulated article instance. Thus, in this case, method propsChanged()

would have to be overwritten accordingly in the class of the encapsulated article instance. Since in standard

OFML data creation normally the standard type OiOdbPlElement is used, it would therefore be necessary to

derive a specific class from it and assign it to the corresponding articles in the OAM data. Section 5.3 describes

a different approach that allows to avoid overwriting propsChanged() in the class of the encapsulated article

instance by means of an extended Meta data creation.

5.2.2 Considering changes in the bounding volume

The algorithm for handling a dimension change is based – amongst others – on a comparison of current and

stored minimum axis-orthogonal bounding volume of the changed element relative to its local coordinate sys-

tem32. The bounding volume is stored by the planning group instance after an element has been inserted and

whenever the above-mentioned methods are called. If a change of the bounding volume takes place without

calling any of the methods mentioned above, this will lead to incorrect handling in subsequent calls of the meth-

ods, because the planning group instance has not noticed anything about the interim change of the bounding

volume!

This has to be considered in situations where the bounding volume changes, but the actual dimension of the

element does not change and, thus, actually no neighbors need to be moved. An example would be creating a

frame foot as a child of a table placed midway under the left neighbor table and the modified table. In order to

avoid the problem above, the methods for handling a dimension change should be called anyway, even if this

means a small overhead. However, if such a change takes place exclusively during the insertion of an element

into the planning group, the call can be omitted. (In the example above, this would be the case, if the foot is

generated in the course of the execution of the actions of an Add interactor by means of a PropChange action

that is executed after a CreateObj action that actually performs the element's creation.) But then, the planning

group instance has to be assisted by other method calls, where different methods must be used for the two

above-mentioned classes:

32 according to method getLocalGeoBounds() of OFML interface Base [ofml]

© 2023 EasternGraphics GmbH Notes on OAP data creation 20/39

• xOiJointPlGroup:

Call of elementCreated()33 after the relevant PropChange action

• xOiCustomPlGroup and xOiLayoutGroup:

Call of delayHandleNewElement() before the CreateObj action and handleNewElement2() after the rel-

evant PropChange action

For details on these methods, see XOI documentation [xoi].

While methods elementCreated() and delayHandleNewElement() have a simple signature and thus can be inte-

grated directly without special programming by means of a MethodCall action34, in the case of

handleNewElement2() the encapsulation by a specially programmed method probably is the preferred way.

5.2.3 Notes on the algorithm in xOiJointPlGroup

In cases were the origin of the local coordinate system (also) has changed, method dimensionChanged(), when

indicated, also performs a re-positioning of the changed element before (possible) re-positioning of relevant

neighbor elements. An example would be attaching a mounting plate on the left side of a table. Re-positioning

of the changed element is also performed if the coordinates of the relevant attach point change accordingly.

In the example with the left mounting plate, therefore, it is assumed that the attach point on the left side of the

modified table “migrates” to the left in accordance with the width of the mounting plate.

Another scenario would be the example already mentioned above (in section 5.2.2) of creating a frame foot

centered below two adjacent tables. If dimensionChanged() is called in this case35, the coordinates of the attach

point on the left side of the table to which the foot is added must not change. Otherwise, there would be an

undesirable shift of the changed table!

The re-positioning of the changed element ideally takes place on the basis of the attach point that was used

when the changed element was attached to (the right of) its left neighbor. In the case where the left neighbor

of the changed element was added to (the left of) the changed element, this attach point is not known (with the

standard implementation in xOiJointPlGroup/xOiLRPlGroup). As a fallback, the changed element then is trans-

lated by the amount of the change in the local origin.

Especially with angled or curved elements, the latter can lead to an undesired repositioning of the changed ele-

ment if dimensionChanged() is called as a result of a change in the orientation of the element (in order to accom-

plish the repositioning of the neighboring elements). This can be prevented by delivering the relevant attach

point via overwriting method getUsedAttPt()36. In the ideal case, where the elements of the planning group are

attached to each other with the help of an attach point each on the left and right side and these attach points

are named the same for all elements, the overwritten implementation would look something like this:

33 inherited from base class xOiLRPlGroup
34 In the case of elementCreated(), the argument itself also is determined by calling a method (lastObj()) via function
methodCall(), see section 4.3.
35 see alternative, described in section 5.2.2
36 The method is defined and documented in the base class xOiLRPlGroup.

© 2023 EasternGraphics GmbH Notes on OAP data creation 21/39

protected func getUsedAttPt(pRefObj, pNeighbor)

{

 var tRet = xOiJointPlGroup::getUsedAttPt(pRefObj, pNeighbor);

 if (tRet == NULL) {

 if (pNeighbor == self.neighbor(pRefObj, @R))

 tRet = @AP_R;

 else

 if (pNeighbor == self.neighbor(pRefObj, @L))

 tRet = @AP_L;

 }

 return(tRet);

}

5.3 Dimension change based on na-Metaproperties

This section describes a Meta data approach that can be used to avoid overwriting method propsChanged() in

the class of the encapsulated article instance, as described in section 5.2.1, in the case of a dimension change

that is based on a change to a na-Metaproperty.

Suppose there is a na-Metaproperty GWidth, which specifies the width of the article in centimeters:

1.

In table go_types, create an invisible utility property of type (format) "ch" controlling sub-items (mode 24):

MT_SE_Name;GWidth;na;60;1;

MT_SE_Name;GWidth2;ch;_60;24;

2.
The implementation of propsChanged() in the class of the Meta type instance (see section 5.2) uses property key

@GWidth2 (instead of @GWidth).

3.
In table go_childprops, specify a parameter set for the possible values of the utility property:

CHP_SE_GWidth2;GWidth2;_60;

CHP_SE_GWidth2;GWidth2;_70;

...

(Before, the parameter set, here CHP_SE_GWidth2, was assigned to the articles of Meta type MT_SE_Name in

table go_articles. Alternatively, an already assigned parameter set can be used.)

Tip:
It is enough to specify just one value (e.g. the start value). This is particularly helpful when there are many

possible values.

4.

In file go_context.ofml, implement a function converting a value of property @GWidth into a value of property

@GWidth2:

func gwidth2gwidth2(pVal)

{

 return(Symbol("_"+String(pVal)));

}

© 2023 EasternGraphics GmbH Notes on OAP data creation 22/39

5.

In table go_actions, add an according action:

MT_SE_Name;GWidth;;CON;;SET_PROP;GWidth2;gwidth2gwidth2(GWidth);

5.4 Group-specific entries in the control data table

If several group classes derived from an XOI base class exist in a series and different specifications have to be

made for these in the respective control data table, the second field (argument) of the table entries can be

used for differentiation, provided that (different) articles have been created for the different planning group

types.

Example:

@StartElement;[@Article,["SINGLE_WP"]];[@foo_bar,"ARTICLE1",@VarCode,"",[]]

@StartElement;[@Article,["DOUBLE_WP"]];[@foo_bar,"ARTICLE2",@VarCode,"",[]]

Details see Application Note AN-2006-01.

5.5 Changing articles via replaceElement()

Edit interactors are often used to change the article of the object. Ideally, a corresponding property is directly

addressed by means of a PropEdit action. Sometimes, however, there is no suitable property available. In this

case, one can use method replaceElement() implemented in the classes xOiJointPlGroup and xOiLayoutGroup

resp. method replaceField() in class xOiTabularPlGroup, calling it by means of a MethodCall action.

For details about using these methods see document [methods].

Notes:

• If the interactor is bound to a group element (not to the planning group instance), after the MethodCall

action with the call of replaceElement() no further actions may follow, which again need a target object

or an object definition as a parameter, because after the action the original active object no longer

exists! (See also notes on DeleteObj in section 4.4.)

• The implementation of xOiLayoutGroup::replaceElement() currently does not work if a neighbor of the

element to be replaced belongs to a different branch.

5.6 Non-Layout articles with xOiJointPlGroup

Occasionally elements have to be inserted in an instance of xOiJointPlGroup (or any derived class) that are not

part of the topological list, e.g. frames, service tables etc.

Regarding such elements a few hints:

• For elements of the planning group that should not be part of the topological list37, hook method

isValidForLRPlanning()38 has to return value 0. Accordingly, this method has to be overwritten specific

to the project.

It should be noted that this method is called immediately after element creation, i.e. at a time when the

article is not initialized yet. As a consequence, the article number or properties of the instance cannot

37 This corresponds roughly to the distinction between layout elements and other elements in xOiLayoutGroup.
38 This method is defined in base class xOiLRPlGroup.

© 2023 EasternGraphics GmbH Notes on OAP data creation 23/39

be used in the method to decide whether or not the given element should be part of the topological list.

All that remains is the ability to test for a type using isA() or for a category using isCat()39.

• If these elements are to be treated as sub-articles, value 1 has to be specified for option

@AllElements4SubArticle in control data table jointplgroup.

• If these elements are placed by means of attach points, by calling method xOiJointPlGroup::isBusyAttPt()

in validity conditions of interactors it is possible to determine whether an element from the topological

list has a neighbor element at the relevant attach point40.

(For details about using this method see document [methods].)

• When changing the dimensions of elements from the topological list (see section 5.2), elements that are

not contained in this list are not moved! Therefore, these elements either have to be re-created or class

xOiLayoutGroup has to be used.

5.7 Additional start elements

Typically, options @StartElement or @StartLayout in the control data tables are used to initially create one or

several start (layout) elements. Occasionally, it may be necessary to initially create also some non-layout ele-

ments.

Because this initialization occurs when an article number is assigned to the planning group instance during

method setArticleSpec(), this method has to be overridden accordingly in derived classes in order to create addi-

tional start elements. In the overridden method, first the inherited implementation has to be called. After that

global function xOiCreateArticle() (see section 4.1) can be used to create further r elements. If required, the

reference objects for the additional elements to be created can be determined using the methods for accessing

the topological list (xOiJointPlGroup41) resp. for accessing the layout structure (xOiLayoutGroup and

xOiCustomPlGroup).

Pay attention also to the notes in section 5.10.3 and, in the case of a class derived from xOiJointPlGroup, the

notes in previous section on creating elements that should not be part of the topological list!

5.8 Removability of group elements

Since the removal of an element from a planning group often is accompanied by further actions (see section 4.4),

usually they should be able to be removed only via OAP interactors (symbol type Delete), but not via the Delete

command of the application. Previously, this explicitly had to be done by directly or indirectly calling the method

setCutable() (OFML interface Base [ofml]) with the value -1. This is no longer necessary: The desired state can

be specified for all planning group classes, separately for layout elements and other elements (see 4.7), in the

respective control data table using options @CutableState4Layout and @CutableState4Other.

39 If for some reason this is not possible or not sufficient, class xOiLayoutGroup has to be used.
40 The methods for determining neighbor elements in the topological list do not work here.
41 via base class xOiLRPlGroup

© 2023 EasternGraphics GmbH Notes on OAP data creation 24/39

5.9 Common properties / Group properties

With all group types, option @CommonProps in the respective control data table can be used to specify the

properties of the elements, which can be edited together at the level of the planning group. Then, a change at

group level is delegated to all group elements that own the changed property.

There are a number of accompanying options that affect the processing of common properties. These are de-

scribed in section 6.1 of Application Note AN-2006-01 [an0601]. Some of these are also discussed in the following

(sub) sections.

Beyond that – if necessary, in addition to the properties generated via @CommonProps – in derived, project-

specific classes group properties also can be programmed using OFML interface Property [property], see section

5.9.4.

5.9.1 Creation and update of common properties

For which of the properties, specified in option @CommonProps, a group property is actually created depends

on the group elements used for generating the group properties and on their current configuration. This can be

controlled or influenced by the following options:

@AllObjs4CommonProps

@NonLayout4CommonProps,

@Meta4CommonProps

@CommonPropsDepth

@NonVisibleProps4Common

@ROPropsEditable4Common

The initial creation of the common properties is done during the initialization of the group instance after the

creation of the initial layout elements42.

An automatic update (re-creation) takes place in case of the following events:

1. When a common property is changed and this has affected at least one group element43.

This reacts to possible dependencies between the common properties.

2. When opening resp. updating the property editor for an OFML instance – via method updateProperties()

of OFML interface Property44 – if the language to be used for product data of the series has changed

since the last opening resp. updated. This reacts to a changed language setting on the part of the user.

As of XOI 1.60 (with the releases in fall 2023), the update is generally also performed during the first call

of updateProperties() after calling setAddStateCode()45. This reacts to possible changes in the product

data, e.g., changed choice lists in the relevant properties

42 usually in method setArticleSpec()
43 via method fixPropsChanged()
44 In the overridden implementation in base class xOiPlGroup
45 in the course of restoring an article instance on the basis of a saved basket representation

© 2023 EasternGraphics GmbH Notes on OAP data creation 25/39

3. If option @AllObjs4CommonProps has value 1:

When creating a group element using a CreateObj action or using global function xOiCreateArticle() in

@extended mode (see section 4.1) and when removing a group element46.

This covers properties that are relevant only for the new element or the element to be deleted.

In certain situations that are not covered by the standard events mentioned above, the update must be triggered

from the OFML resp. OAP data. For this purpose, method updateCommonProperties() is implemented in the

XOI classes for all group types (see document [methods]). Typical use cases are:

• A property has been changed that affects the visibility or the state of common properties, where the

changed property itself is not included in the set of common properties.

• A group element is created or removed47 that has properties listed in the common properties, but the

creation or removal is not covered by the standard situation 3 described above.

The method can and should be called directly in the OAP data by means of a corresponding MethodCall action

after the relevant actions. (Thus, no special programming is required for this.) However, if an element is removed

by an action triggered by an interactor of the element itself, this is not possible (see section 4.4). In this case,

consider using an interactor of the parent article to remove the element.

5.9.2 Common properties for a new element

When a new element is inserted into the group the element gets the configuration defined by the respective

action (as long as there is no Metadata-driven inheritance of property values). This configuration can differ from

the current settings of the common properties of the planning group. If the current settings of the common

properties of the planning group are to be adopted for the new element, method assignCommonPropValues()48

has to be called on the planning group instance in an additional action after the action that creates the element.

(Whether actually the current settings of the common properties are to be adopted for the new element, or

rather a Metadata-controlled inheritance of property values of the reference object has to be carried out, is to

be determined on a project-specific or situation-specific basis49.)

Method assignCommonPropValues() expects as an argument the element to which the procedure is to be ap-

plied. In the considered scenario this is the element which was created by means of the CreateObj action. The

best way to specify this element is to apply object category MethodCall, using the appropriate methods to access

the neighbor element of the reference object defined by the CreateObj action (see also section 5.1).

For example, if the CreateObj action is executed in the context of an Add interactor bound to the selected group

element (active object), and if the active object also is the reference object of the CreateObj action, methods

neighbor() (xOiJointPlGroup) resp. getNeighbor() (xOiLayoutGroup and xOiCustomPlGroup) could be used, where

in the first argument the active object is passed by means of placeholder $SELF, and the second argument spec-

ifies the attach direction (xOiJointPlGroup) resp. the attach point used in the CreateObj action (xOiLayoutGroup

and xOiCustomPlGroup).

46 via events of types @ArticleInserted resp. @ElementRemoval
47 e.g., as a result of a property change
48 The method is equally defined and implemented in all classes. It is described in the document [methods] (as well as the
both methods mentioned below).
49 Property values of the reference object can deviate from the common properties if the properties of the reference object
were changed again after the last change of the common properties.

© 2023 EasternGraphics GmbH Notes on OAP data creation 26/39

5.9.3 Property groups

By default, when generating the common properties (option @CommonProps), the property classes are not

adopted from the elements and no specific class is assigned either. Thus, in the property editor, the generated

common properties appear in the standard group, i.e. “Article” or “Other”, if additional programmed properties

(see next sub section) are assigned to their own class.

In most projects this behavior is sufficient. However, in the following situations, a class assignment for the gen-

erated common properties can be useful or even necessary:

1. With a large number of common properties, classes/groups can be used to increase the clarity for the

user.

2. If the common properties are drawn from different object types and these each have disjoint sets of

relevant properties:

a. it makes sense to make this visible to the user as well50

b. separate property groups are necessary if (different) properties of the different object types

have the same language-specific name51

In the simplest case, the class assignment for the generated common properties is done by setting value 1 for

option @Classes4CommonProps52. Currently, the classes are adopted from the group elements for all generated

common properties. If this is not desired, or if specific classes are to be assigned in connection with additional

programmed properties (see next sub section), this must be done in derived classes using method setPropClass()

of OFML interface Property [property].

In both cases, language-specific text resources (.sr files) that correspond to the names of the property classes

also should or must be created in the series of the planning group article.

5.9.4 Programmed group properties

In many projects, users should be able to control some general planning features of the group, e.g. the maximum

permitted dimensions. For this purpose, corresponding properties have to be programmed in the project-specific

derived group class. Usually this is done in addition to the automatically generated common properties (option

@CommonProps).

Occasionally, properties also have to be programmed in the project-specific class because the properties of the

group elements do not provide enough functionality or they cannot be adopted one-to-one for the group53.

Here are some hints and tips for programming group properties:

1. Since the list of keys of the programmed properties is needed in several places of the implementation

of the group class, it is recommended to define a corresponding static class variable, e.g.:

static var sMyPropKeys = @(@Foo, @Bar);

2. As already described in Application Note AN-2006-01 for option @CommonProps, also the programmed

properties should be specified in table non_pd_properties for better performance.

50 It is then easier for the user to see resp. understand that the change of a property from a given property group only affects
certain elements of the planning group.
51 and, thus, cannot be distinguished by the users
52 The prerequisite for this is, of course, that suitable property classes are assigned in the OFML data of the group elements.
53 This is often the case when the OAP project is built on top of existing OFML data. In projects where the OFML data and the
OAP data are built together, care should be taken from the outset that the properties of the group elements are created in
the OFML data already in such a way that specific programming of properties in the group class is avoided

© 2023 EasternGraphics GmbH Notes on OAP data creation 27/39

3. Base class xOiPlGroup for all planning group types implements some standard handlings (e.g. regarding

persistence) for the properties of a group instance, the keys of which are supplied by hook method

getFixProperties(). Thus, as a rule, this method should be overridden in the project-specific group class

and supply the keys of the programmed properties, if necessary, in addition to the keys of the generated

common properties supplied by the inherited implementation.

Example see section 5.10.1.

4. The methods of the new Property interface [property] are recommended for defining the properties.

(The language to be used for the names of the property and the possibly existing choice list values is

determined by means of method getPDLanguage()54.)

5. If the programmed properties are created in addition to the automatically generated common proper-

ties (@CommonProps), it must be decided whether the programmed properties should be displayed in

the property editor before or after the generated common properties. By default, the generated com-

mon properties are created in the property list starting from position 155.

• If the programmed properties are to follow afterwards, they must be assigned a correspondingly

high position number.

• In the other case, option @FirstPos4CommonProps has to be used to specify a position number

high enough for the first generated common property.

However, with the help of option @CommonPropsPos56, a mixed order can also be realized!

6. The initial definition of the programmed properties is done in the overridden method setArticleSpec()

after calling the inherited implementation and, if necessary, after generating additional start elements

(see section 5.7).

public func setArticleSpec(pSpec)

{

 <BaseClass>::setArticleSpec(pSpec);

 initMyProps();

 }

To avoid overhead (performance) and side effects, the initial values are not assigned using

setPropValue(), but by setting the value in the table of dynamic properties (method getDynamicProps()

from OFML interface Base [ofml]) or by calling the corresponding set methods.

54 For details see [property]
55 in the order according to option @CommonProps
56 As of XOI 1.60 (fall 2023)

© 2023 EasternGraphics GmbH Notes on OAP data creation 28/39

7. The handling of a change of a programmed property by the user is done in the overridden

method fixPropsChanged(), if necessary, after calling the inherited implementation, which performs the

standard handling for generated common properties (see also section 5.9.1):

protected func fixPropsChanged(pProps, pDoChecks)

{

 var tRet = <BaseClass>::fixPropsChanged(pProps, pDoChecks);

 var tP;

 foreach(tP; pProps) {

 if (sMyPropKeys.find(tP) < 0) continue; // not my cup of tea

 // handle change of my property tP

 ...

 }

 return(tRet);

}

8. If the user changes the language setting in the application at runtime and the group instance is selected

at this point (open property editor), the language-specific names of the programmed properties includ-

ing their values and classes have to be changed57.

This is done by overriding method updateOtherFixProperties2()58. This hook method is called by the

standard implementation of method updateProperties() in base class xOiPlGroup if the language to be

used for the product data of the series has changed since the last call (see also section 5.9.1, point 2).

At this time, the names for the generated common properties have already been changed by the base

class. So, these do not have to be handled in updateOtherFixProperties2()59.

If the programmed properties are created using method setupProperty2() of the Property interface (see

point 4 above), a call of setPropName() and, if necessary, a call of setPropChoiceList() (if no text resources

are used for the values) is sufficient to adapt the texts. If the properties are created using method

setupProperty() of the old Property interface, they have to be re-created using this method. In both

cases, the language to be used is determined by means of method getPDLanguage()60.

9. If the choice lists and, if necessary, other attributes of properties of group elements are used in the

definition of programmed properties, it is necessary to react to possible changes in the product data.

This is also done by overwriting method updateOtherFixProperties2()61. This hook method is called, in

addition to the situations described in point 8, by the standard implementation of updateProperties() in

base class xOiPlGroup, if it is the first call after the call of setAddStateCode() (see also point 2 in section

5.9.1). At this time the common properties have already been re-created by the base class62.

In contrast to the situation from point 8 - method updateOtherFixProperties2() has parameters, by which

the triggering situation can be recognized - here the simplest and safest solution probably is to com-

pletely redefine the concerned programmed properties (see point 6).

57 This also applies if a saved group instance will be opened for reconfiguration and a different language is set in the applica-
tion than at the time of saving.
58 As of XOI 1.60 (fall 2023). Before that, hook method the updateOtherFixProperties() was used. This is still supported due to
backward compatibility, but is considered obsolete.
59 Hence the "Other" in the method name.
60 For details see [property]
61 As of XOI 1.60 (fall 2023)
62 So, these do not have to be handled in updateOtherFixProperties2().

© 2023 EasternGraphics GmbH Notes on OAP data creation 29/39

5.10 Persistency

The XOI planning group classes store all the information that is necessary to reconfigure the planning group.

Essentially, this is done in the methods getAddStateCode() and setAddStateCode() of the OFML interface Article

[article]. When implementing derived classes, the following aspects must be taken into account so that the in-

herited behavior continues to function or to avoid overwriting the two mentioned methods.

5.10.1 Properties

If own properties are programmed in the derived class, the keys of these properties must be supplied via over-

ridden method getFixProperties(). If these properties are defined in addition to the properties that are generated

by the base class according to option @CommonProps, this must be taken into account accordingly:

 protected func getFixProperties()

 {

 var tMyProps = @(@Foo, @Bar);

 var tRet = xOiCopyAggr(<BaseClass>::getFixProperties(), NULL, 0);

 xOiCopyAggr(tMyProps, tRet, 0);

 return(tRet);

 }

5.10.2 Member variables

If information is stored in member variables that is required for a re-configuration, and if this information cannot

be restored in any other way, the values of these member variables have to be encoded in the so-called

AddStateCode (getAddStateCode()), and parsed from the AddStateCode and assigned again during restoration

(setAddStateCode()).

To avoid the rather complex overwriting of the two methods, all XOI planning group classes offer a mechanism

that is based on method getAddStateMembers(): For all member variables whose names (String) are supplied

by the method (return value is of type Vector), the XOI base class takes the encoding in the AddStateCode and

the restoration from it.

Regardless of whether the encoding is done via getAddStateMembers() or not, it should be noted that the mem-

ber variables to be encoded must not contain any object references!

There are two approaches to circumvent this limitation:

1. The two methods mentioned above are overwritten: in getAddStateCode(), the object references are

converted into storable information (e.g. object name, see below) before calling the inherited imple-

mentation, and in setAddStateCode() the object references accordingly are restored after calling the

inherited implementation.

2. No object references are stored in the relevant member variables, but rather an information from which

the respective object reference can be determined if necessary (e.g. object name, see below).

Caution: When using object names, the complete (hierarchical) object name must not be used, only the local

name within the planning group instance!

Methods localObjName() and localName2Obj() are available in all planning group classes to implement these

approaches. The methods are specified and implemented in the base class xOiPlGroup.

© 2023 EasternGraphics GmbH Notes on OAP data creation 30/39

As an alternative to the (local) object name, the index of the instance can be saved under which the instance is

managed in the list of elements of the planning group instance (see method getElements() of OFML interface

MObject [ofml]).

If a list of object references has to be saved, global XOI functions xOiElRefs2ElIdcs() and xOiElIdcs2ElRefs() can be

used63. For an example how to use these methods see below.

Object references in member variables (currently) also have to be observed and handled in the OFML

persistence rules64!

Assuming there is a member variable mMyEL which contains a list of object references, the persistence rules

could be implemented as follows:

 rule START_DUMP(pArg)
 {

 mMyEL = xOiElRefs2ElIdcs(self, mMyEL);

 return(0);

 }

 rule FINISH_DUMP(pArg)

 {

 mMyEL = xOiElIdcs2ElRefs(self, mMyEL);

 return(0);

 }

 rule FINISH_EVAL(pArg)

 {

 mMyEL = xOiElIdcs2ElRefs(self, mMyEL);

 return(0);

 }

5.10.3 Additional start elements

According to section 5.7, overridden implementations of method setArticleSpec() can create further elements in

addition to the start elements that are created in the inherited implementation according to options

@StartElement resp. @StartLayout.

In order for the restoration to work using method setAddStateCode() of the base class, the following has to be

taken account of:

• If deriving from xOiJointPlGroup and xOiLayoutGroup, it must be ensured that overridden method

elRemoveValid() does not prevent the removal of elements created in setArticleSpec().

• If deriving from xOiTabularPlGroup and xOiCustomPlGroup , no additional elements may be created in

setArticleSpec() if the method is called in the course of the restoration of the planning group for re-

configuration. The distinction is made using method xOiBasePlanning::getCreationMode()65:

63 see section "xOiFuncs", sub-section "DUMP and EVAL rule supporting functions" in the XOI documentation [xoi]
64 The basket implementation (OBK) used in the applications writes a dump of the article instance to the cut buffer when an
article is deleted or copied.
65 For details see XOI documentation [xoi], section „Main Planning Classes“

© 2023 EasternGraphics GmbH Notes on OAP data creation 31/39

 public func setArticleSpec(pArtNo)

 {

 xOiTabularPlGroupVert::setArticleSpec(pArtNo);

 if (oiGetPlanning().getCreationMode() == 0) {

 // add some further elements:

 ...

 }

 // else: nothing to do during re-creation

 }

5.11 Overriding methods of XOI base classes

Occasionally, before or after a method of the planning group instance is called via an OAP action of

type MethodCall, further treatments must be carried out. Ideally, this should be done via additional preceding

resp. succeeding OAP actions66. If this is not possible for certain reasons, or if it is more efficient to do all in one

method call, the method in question should not be overwritten directly in the derived class (in order to imple-

ment there the additional treatments), as this can hinder the further development of the used XOI base class67.

Instead, an own method should be defined and implemented in which the relevant method of the XOI base class

is called at a suitable point!

public func myXoiMethod(...)

{

 // do something special

 ...

 xoiMethod(...);

 // do something other

 ...

}

5.12 Managing the property state of group elements

Often the task is that certain, normally editable properties of an article instance should not be editable (or not

visible at all) if the article instance is an element of a planning group. For example, it may be required that a

material property, e.g. @Color, which is raised to the planning group level using option @CommonProps (see

section 5.9), should not be editable for individual elements of the planning group in order to guarantee a uniform

look of the planning group.

Note:

If a property of the group elements is made not editable or not visible with the approaches described in this

section, but should be visible and editable as part of the @CommonProps on the level of the planning group,

option @ROPropsEditable4Common resp. option @NonVisibleProps4Common has to be used!

66 according to the principle of avoiding OFML programming
67 e.g. the introduction of additional optional parameters

© 2023 EasternGraphics GmbH Notes on OAP data creation 32/39

One approach to this involves the following steps:

• For the start elements of the planning group, also the state of the relevant properties is specified in

option @StartLayout (or @StartElement), e.g.:

@StartLayout;;[\

[NULL, @man_series,"0815",@VarCode,"",[],[[@Color,1]]],\

[@AP_R,@man_series,"0815",@VarCode,"",[],[[@Color,1]]]]

Here, the property state hast to be specified in accordance with method setPropState2() of OFML inter-

face Property [property]. There, value 1 specifies a visible but not editable property.

• For elements subsequently inserted into the planning group via an OAP interactor, after the CreateObj

action in the action list of the interactor (or the relevant entries of an ActionChoice) an additional

PropChange action is specified (see also section 5.1), e.g.:

PC_DisableColor;Editability;Color;0

Note that this approach does not require any additional OFML programming. Unfortunately, this approach does

not work if the property in question is an original, commercial property of the article and the article is encapsu-

lated by a meta type instance: after a property change triggered by the planning group instance, the property

gets its original state again (editable).

Then, the approach described above has to be modified and expanded as follows:

• The commercial property in question is raised to the level of the meta type instance as a so-

called na-property. (The name of the property by default then changes to @GColor and must be

changed accordingly in the places mentioned above.)

• For the start elements, method setArticleSpec() must be overwritten in a specifically derived planning

group class according to the following pattern (for xOiJointPlGroup):

 public func setArticleSpec(pSpec)
{

 xOiJointPlGroup::setArticleSpec(pSpec);

 var tEl;

 foreach(tEl; self.getElOrder())

 tEl.updateNAPropState(@GColor, 0);

}

• For elements subsequently inserted into the planning group via an OAP interactor, in the relevant action

list after the CreateObj action and the PropChange action described above an additional MethodCall

action must be specified according to the following pattern:

MC_Disable_GColor;Instance;::ofml::go::GoMetaTyppe;updateNAPropState;@GColor,0

Remark:

Method GoMetaType::updateNAPropState() guarantees a permanent state change of a na-property.

There, the status has to be specified according to method setPropState() of old OFML interface Property,

i.e., a property that is visible but cannot be edited here is specified by the value 0.

© 2023 EasternGraphics GmbH Notes on OAP data creation 33/39

In the case of meta-type-based articles, the following approach may be more suitable, especially if the state of

several (many) properties has to be modified68. This is often the case with meta types, since, in addition to the

above example with the material property, properties for an article exchange often are not useful in the context

of the planning group and must be deactivated:

• An auxiliary (invisible) property is created in the meta type, e.g. In_PGroup, with possible values 0 (no)

and 1 (yes), where 0 is the initial value.

• In table go_actions, the relevant properties69 are deactivated via a CON_PROP action if the condition

In_PGroup == 1 is met.

• In OAP, property In_PGroup is set to 1. (For the start elements this is done in the corresponding option

in the control data table. For additional elements inserted via an interactor this is done via a PropChange

action after the CreateObj action in the relevant action list.)

5.13 Reaction to property changes of elements

Often the group instance has to react to changes of certain properties of group elements. In principle, this can

be realized with the following two approaches:

1. In the relevant classes of the group elements, method setPropValue() or propsChanged() is overridden

and the change of a relevant property is delegated to a corresponding method of the parent group

instance.

2. The group instance registers with the global change manager (type OiChangeManager) for change

events of type @PropertyChange, triggered by elements of the group, and reacts to them in method

receivePropertyChange() (example see below)70.

(For commercial properties that are raised to the level of an encapsulating meta type instance as so-

called na-properties, event type @MetaMainChildPropChange must be used if necessary71.)

In most cases, the 2nd approach is preferable, as it does not require any implementations in project-specific

element classes72!

In addition, the second approach facilitates the solution to the following problem:

If the group contains Meta type instances as elements, during the (re)creation of the group for reconfiguration

property changes are triggered by base class GoMetaType when processing the saved variant code. These

changes are irrelevant for the group instance, since the group has the correct, saved state when the (re)creation

process has finished. Alone for reasons of performance, the group instance should not react to these changes.

Even more, in certain cases there may be misbehavior or evaluation errors if the group reacts to them, since at

this point not all (other) group elements have been completely restored yet!

68 Option @StartLayout and the action lists then would become very long and confusing with the first approach.
69 For that, commercial properties such as @Color also have to be created as na-properties, as in the first approach.
70 The concept of the global change manager and the currently supported event types are described in the XOI documentation
[xoi] in section "ChangeManager Event Types".
71 With these properties, the property change is delegated to the so-called main child of the meta type instance. Method
setPropValue() for the main child (also) reports an event of type @PropertyChange, but at that time no (possibly required
and relevant) adjustments in the meta type instance itself took place yet.
72 which might also have to be first derived from the standard classes just for this purpose

© 2023 EasternGraphics GmbH Notes on OAP data creation 34/39

The following is the implementation pattern based on the 2nd approach:

public func initialize(pFather, pName)

{

 <BaseClass>::initialize(pFather, pName);

 var tChMgr = oiGetChangeManager();

 if (tChMgr != NULL)

 // consider property changes in (grand) children

 tChMgr.register(self, @(@PropertyChange), [@(self), 0]);

}

public func receivePropertyChange(pPublisher, pKeys)

{

 // Do nothing during Meta type initialization of pPublisher!

 if (pPublisher.isA(GoMetaType) &&

 (!pPublisher.isMetaInitialized() || pPublisher.sInSetAddStateCode))

 return;

 // process pKeys and check for possible re-action:

 ...

}

5.14 Collision detection

If a new element is added to a defined attach point of an element already in the group by means of a CreateObj

action or function xOiCreateArticle() (resp. xOiCreateArticle2())73, a standard check is performed to determine

whether the new element collides with other elements in the group74. If a collision is detected, the insertion of

the new element is rejected.

In the case of inaccurate geometry data resp. inaccurately defined attachment points, collision detection for the

group elements is often switched off completely or temporarily (during the insertion process) in the OFML data75.

This has the following consequences:

1. In the case of groups planned “around the corner”, the new element can collide with other group ele-

ments.

2. It is not possible to insert the new element between two other group elements (insert mode 2)!

In order to avoid these problems, the geometry data and attach points should be defined as precisely as possible

from the outset so that the collision detection need not be switched off!

If the deactivation of the collision detection cannot be prevented, at least the second problem can be circum-

vented with some programming effort (when using xOiCreateArticle() resp. xOiCreateArticle2()). The basic idea

is to use methods isBusyAttPt()76 resp. isFreeAttPt()77 to check whether the attach point of the reference object

is already occupied, and in this case to force the collision detection.

The following implementation pattern deals with the case where, for a data creation based on Meta types, the

collision detection is temporarily deactivated for the new element by means of GSetup flag 4096.

73 Concerns the group types xOiCustomPlGroup, xOiJointPlGroup and xOiLayoutGroup.
74 via method checkChildColl() of OFML interface Complex [ofml]
75 via method disableCD() of OFML interface Base [ofml]
76 class xOiJointPlGroup
77 class xOiLayoutGroup and xOiCustomPlGroup,

© 2023 EasternGraphics GmbH Notes on OAP data creation 35/39

In the project-specific class derived from GoMetaType, method isEnabledCD() must be overwritten:

public func isEnabledCD()

{

 var tRes = GoMetaType::isEnabledCD();

 var tFather = self.getFather();

 if (!tRes && tFather.isA(myLayoutGroup))

 tRes = tFather.needCD4Insertion();

 return(tRes);

}

In the project-specific class for the planning group myLayoutGroup:

static var sNeedCD4Insertion = 0;

func needCD4Insertion()

{

 return(sNeedCD4Insertion);

}

// Used in OAP via a MethodCall action

public func myAddElement(pRefObj, pAttPt, pPID, pModel)

{

 if (!isFreeAttPt(pRefObj, pAttpt))

 // enforce re-positioning of previous neighbors (insert mode 2)

 sNeedCD4Insertion = 1;

 var tNewEl = xOiCreateArticle(self, pRefObj, pAttpt, pPID, tModel, "", @VarCode);

 sNeedCD4Insertion = 0;

 ...

}

The implementation pattern above assumes that collision detection is switched on (by default) for the child ob-

jects of the Meta type instance 78!

Therefore, the more general solution to the problem is not based on overwriting isEnabledCD() in the classes of

the group elements, but on temporarily activating collision detection during xOiCreateArticle() (resp.

xOiCreateArticle2()):

// Used in OAP via a MethodCall action

public func myAddElement(pRefObj, pAttPt, pPID, pModel)

{

 var tEl, tDisableCD = @(); // elements to be disabled again after xOiCreateArticle()

 if (!isFreeAttPt(pRefObj, pAttpt)) {

 // enforce re-positioning of previous neighbors (insert mode 2)

 foreach(tEl; getElements()) {

 if (!tEl.isEnabledCD()) {

 tDisableCD.pushBack(tEl);

 tEl.enableCD();

 }

 }

 }

 var tNewEl = xOiCreateArticle(self, pRefObj, pAttpt, pPID, tModel, "", @VarCode);

 // tNewEl. disableCD(); // ?

 foreach(tEl; tDisableCD) tEl.disableCD();

 ...

}

78 If the collision detection is enabled for the Meta type instance, during the actual check for its child objects, via global
function oiCollision(), the status applies which is defined for the objects to be checked against each other via disableCD() resp.
enableCD().

© 2023 EasternGraphics GmbH Notes on OAP data creation 36/39

6 OFML-Debugging

The remarks in this section refer to the OFML debugging in the pCon.planner using the OFML Console provided

with the plugin X3G-OFC.

6.1 Debugging the xOiOAPManager

The OAP Manager is the interface between the OAP data and the applications. For that, at runtime there is

exactly one instance of the class xOiOAPManager. In case of problems during processing the OAP data, an OFML

debug log for this class can be helpful79. Essentially 3 top-level methods are relevant here:

• When selecting an article the application calls methods getArticleData() and getInteractors() (in this

order).

• When an interactor is activated the application calls method getActionData() for each action of the in-

teractor80.

(The detailed specification of these methods can be found in the XOI documentation [xoi]81.)

Calls of getArticleData()/getInteractors() occur again - with unchanged selection - if the mouse pointer enters

another view of the Planner (because for each view the interactor symbols have to be determined and displayed).

In order to avoid unnecessary output in the log file, it is recommended to debug in 1-view mode.

Errors in the OAP tables can be found relatively easily and quickly by looking for the following output in the log

file (debug.out):

W: OAP database access error: ...

For this purpose, at least the debug modes Warn(ing), Func and Func2 must be set and the function trace

level should be set to at least 5 (if ActionChoice actions are involved, at least to 7).

6.2 Debugging CreateObj

If a CreateObj action with a given attach point (or a MethodCall action using global functions xOiCreateArticle()

and xOiCreateArticle2()) does not produce the desired result (object is not created), the cause often is not im-

mediately obvious.

Here are 2 troubleshooting tips:

1.

One reason could be that a collision of the new object with already existing objects would occur at the position

of the selected attach point (either due to incorrectly positioned attach point or due to "inaccurate" geometries).

Whether this is the case can be seen quite quickly with the debug setting Collision. The log file then contains
entries like this

c.e1 (myPlGroup) detected collision: c.e1.ch (myClass) >|< c.e1.e1 (myClass) ...

79 The OFML Console already provides a suitable debug profile OAP for this purpose.
80 If an error occurs while accessing the OAP data of an action, the processing of the actions is terminated.
81 Class xOiOAPManager is contained in section "Utility Classes".

© 2023 EasternGraphics GmbH Notes on OAP data creation 37/39

2.

If 1. does not apply, (unfortunately) one must dive a little deeper into the process of object creation. It is im-

portant to know that the above actions are based on the so-called checkAdd() mechanism. For details about this

see the OFML specification. For the moment it is enough to know the following:

Method checkAdd() is called on the parent object to determine the position and rotation for the new object.

Before this, the attach point specified in the action is activated at the reference object (neighbor) using method

setActiveAttPt() (interface AttachPts [xoi]).

Thus, in general, in case of problems with CreateObj, the class of the parent object (and possibly relevant base

classes82) has to be specified in the debug settings. In the log file then you have to look for clues in the outputs

for method checkAdd().

However, in a first step it is recommended to specify only the class OiGlobal and to search in the log for the global

function oiGetPosRot4AttachPts(). This function is used by all standard implementations of checkAdd() in the

base classes of OI and XOI for the actual determination of position and rotation for the new object..

One cause for a failure of checkAdd() could be, e.g., that there is no definition for the given attach point. Then

you would see this relatively quickly based on the output for the mentioned function:

1> OiGlobal::oiGetPosRot4AttachPts(object: c.e1.e1 (GoMetaType), [object: c.e1.ch

(GoMetaType), NULL, 1, 1, 1])

I: is child?: 0

I: list of att pts: @(...)

I: active attach point: @ApOb_12R

W: missing or wrong attach point definition for active attach point @ApOb_12R

1< OiGlobal::oiGetPosRot4AttachPts: NULL.

If this is not the case, the cause of the error could be that there is no suitable opposite for the active attach point.

This can be seen in the log by adding the class OiFuncs. Then, the output for function oiCalcCheckAttPt() in the

log (1 level below oiGetPosRot4AttachPts()) shows the following:

no opposite attach point(s) for @ApOb_12R ...

In case of attach points defined in meta data table go_attpt.csv, the cause could be that they are not defined

as opposites in table go_action.csv.

6.3 Usage of xOiOAPManager::setDBMode()

Normally, the currently accessed OAP database will be kept open until access to the OAP database for another

OFML program. This is somewhat inconvenient for the OAP data creator, as he/she cannot test "live" changes

in the OAP data of the OFML program currently being edited.

The class xOiOAPManager provides the method setDBMode() to change this default behavior (mode

@KeepOpen): With mode @CloseOpen OAP databases will be closed and opened at each time an object is se-

lected or after an action was performed.If you enter the command

/t.getOAPManager().setDBMode(@CloseOpen)

in the command line of the OFML Console, then you can immediately test changes in the OAP data83.

82 e.g., in the case of xOiJointPlGroup the base classes xOiLRPlGroup and xOiPlGroup
83 However, the oap.ebase must be rebuilt in the process.

© 2023 EasternGraphics GmbH Notes on OAP data creation 38/39

7 Miscellaneous

7.1 EBase for control data tables

If a control data table used by planning group class (see section 5) has to be transferred to the ofml.ebase

and an EBase version older than 1.2.384 is used, the following problem has to be considered:

If an empty variant code is specified in a table entry for option @StartElement or @StartLayout, like in

@StartElement;;[@foo_bar,"ArticleNr",@VarCode,"",[]]

the field must be enclosed in double quotation marks (") and double quotation marks in the field contents have

to be replaced by 2 consecutive double quotation marks:

@StartElement;;"[@foo_bar,""ArticleNr"",@VarCode,"""",[]]"

Such a transformation is also required if the article number or the variant code contains a semicolon85.

Advice:

The elements in the vector after the article number are optional. If these are not relevant, as in the example

above, they should be omitted, which makes a transformation superfluous:

@StartElement;;[@foo_bar,"ArticleNr"]

7.2 Metatype-Type-Mapping

The specification contains no statement which series to specify in field 2 of the Metatype2Type table.

It is currently implemented in such a way that the series of the article is expected in this field, not the series in

which the Meta type is created!

A consequence of this is that in the case where an OAP database is created for several commercial series, and

there are articles from the various series that use one Meta type (ID) (no matter in which series this is created)

for this Meta type multiple entries have to be created in the mapping table, for example:

man;foo;MTID;;OAP_TYPE

man;bar;MTID;;OAP_TYPE

(There may be other/better regulations in the future. In any case, a future change in the OAP core of the applications will

contain a downward-compatible fallback, so that OAP data created according to the current state still will be processed cor-

rectly.)

84 contained in version 1.4.0 of the OFML-Binaries
85 This corresponds to the regulations known from the specifications of OCD and OAP for the representation of a table field.

© 2023 EasternGraphics GmbH Notes on OAP data creation 39/39

Appendix

A.1 Document history

2023-11-07:

• Various minor corrections and improvements.

• Additional notes in section 3.3 (dynamic interactors) related to the target object of an action whose ID

is used as the argument of a methodCall() expression in conditions.

• New section 3.5 on considering the configuration context for interactor visibility.

• In section 4.1 now the new global function xOiCreateArticle2() is mentioned.

• Section 5 now considers new class xOiCustomPlGroup.

• Added note regarding extended behavior of xOiPlGroup::updateProperties() in section 5.9.1.

• More precise description regarding usage of method getPDLangauage() in section 5.9.4.

• New note in section 5.9.4 regarding usage of new option @CommonPropsPos.

• New note in section 5.9.4 on reacting to possible changes in the product data when definitions of pro-

grammed properties are derived from attributes (e.g., choice lists) of properties of group elements.

• New hint on event type @MetaMainChildPropChange in section 5.13.

• Additional notes on collision detection in section 5.14.

• New section 6.3.

2022-01-03:

• New section 5.14 with notes on collision detection.

• Correction and addition regarding the debug settings in section 6.1.

2021-11-17:

• First version containing this history.

• Obsolete section 3.2 “Visibility of interactor symbols” has been replaced by a section that addresses the

question of when it is better to bind an interactor to the planning group or to the group element.

• Sections 3.3 and 3.4 have been swapped.

• Update of section 3.3 on dynamic interactors, including notes on the use of placeholder $INTERACTOR.

• Additional note in section 4.4 on actions that remove the active object.

• New section 4.6 on the use of the dummy action type NoAction.

• Class xOiTabularPlGroup now is treated in section 5 "on an equal footing" with the older classes for

planning groups.

• Additional note in section 5.1 on the use of object category MethodCall.

• Additional note in section 5.5 on method xOiLayoutGroup::replaceElement().

• Extensive expansion and restructuring of section 5.9 with many new information and tips on creating

and using of group properties (common properties).

• Renaming of section 5.11 (better description of the content) and addition of an example.

• Additional note in section 5.12 on the use of options @ROPropsEditable4Common and

@NonVisibleProps4Common.

• New section 5.13 with notes on the realization of reactions to property changes of elements on the part

of a group instance.

	1 General
	1.1 Extensions in table structures / EBase
	1.2 Separate series for OAP data
	1.3 Name conventions for identifiers

	2 Conditions/Expressions
	2.1 OAP expressions vs. OCD expressions
	2.2 Using standard methods
	2.3 Article at top planning level?
	2.4 Numerical metaproperties
	2.5 Special Symbols
	2.6 Expressions with integers

	3 Interactors
	3.1 Recommendations for using the 3 abstract symbol sizes
	3.2 Interactor for planning group or group elements?
	3.3 Dynamic interactors
	3.4 3D interactor symbols
	3.5 Correct configuration context?

	4 Actions
	4.1 Creating articles via xOiCreateArticle()
	4.2 Change direction in DimChange actions
	4.3 Nesting of method calls
	4.4 Notes on DeleteObj
	4.5 RG properties
	4.6 Action type NoAction

	5 Planning groups
	5.1 Using object category MethodCall
	5.2 Changing dimensions of group elements
	5.2.1 General
	5.2.2 Considering changes in the bounding volume
	5.2.3 Notes on the algorithm in xOiJointPlGroup

	5.3 Dimension change based on na-Metaproperties
	5.4 Group-specific entries in the control data table
	5.5 Changing articles via replaceElement()
	5.6 Non-Layout articles with xOiJointPlGroup
	5.7 Additional start elements
	5.8 Removability of group elements
	5.9 Common properties / Group properties
	5.9.1 Creation and update of common properties
	5.9.2 Common properties for a new element
	5.9.3 Property groups
	5.9.4 Programmed group properties

	5.10 Persistency
	5.10.1 Properties
	5.10.2 Member variables
	5.10.3 Additional start elements

	5.11 Overriding methods of XOI base classes
	5.12 Managing the property state of group elements
	5.13 Reaction to property changes of elements
	5.14 Collision detection

	6 OFML-Debugging
	6.1 Debugging the xOiOAPManager
	6.2 Debugging CreateObj
	6.3 Usage of xOiOAPManager::setDBMode()

	7 Miscellaneous
	7.1 EBase for control data tables
	7.2 Metatype-Type-Mapping

	Appendix
	A.1 Document history

