
The OFML Interface Property

Version 2.9

Thomas Gerth, EasternGraphics GmbH (Editor)

2023-09-14

Legal Notice

Copyright © 2023 EasternGraphics GmbH. All rights reserved.
This work is copyright. All rights are reserved by EasternGraphics GmbH. Translation, reproduction
or distribution of the whole or parts thereof is permitted only with the prior agreement in writing of
EasternGraphics GmbH.
EasternGraphics GmbH accepts no liability for the completeness, freedom from errors, topicality or
continuity of this work or for its suitability to the intended purposes of the user. All liability except in
the case of malicious intent, gross negligence or harm to life and limb is excluded.
All names or descriptions contained in this work may be the trademarks of the relevant copyright owner
and as such legally protected. The fact that such trademarks appear in this work entitles no-one to
assume that they are for the free use of all and sundry.

Contents

1 Introduction and General definitions 2

1.1 Motivation to revise the interface . 2

1.2 Attributes of properties . 2

1.3 The property definition . 3

1.4 Language–Text mappings . 5

2 The methods 6

2.1 Property setup . 6

2.2 Activation state . 8

2.3 Value ranges and choice lists . 9

2.4 Property values . 11

2.5 Property classes and groups . 13

2.6 Miscellaneous methods . 15

2.7 Client support . 17

3 Other aspects 20

3.1 Options . 20

3.2 Restrictable OCD properties . 20

3.3 Empty choice lists . 20

3.4 Application callbacks . 20

A Alphabetical index of methods 22

B Obsolete methods 24

C Modification history 25

References

[article] The OFML Interfaces Article and CompositeArticle (Specification). EasternGraphics GmbH

[dsr] Data Structure and Registration (DSR) Spezification. EasternGraphics GmbH

[ofml] OFML – Standardized Data Description Format of the Office Furniture Industry.

Version 2.0, 3rd revised edition.

Industrieverband Büro und Arbeitswelt e. V. (IBA)

The documents are available at the Download Center of EasternGraphics

https://download-center.pcon-solutions.com

in the category OFML Specifications.

1

https://download-center.pcon-solutions.com

1 Introduction and General definitions

The specifications in this document replace section 4.41 in part III of the OFML specification [ofml].
However, the methods specified there still may be used. For the sake of completeness, they are listed in
section B, but are no longer specified here. If necessary, consult [ofml].

This document version refers to version 1.43 of OFML base library OI (fall 2023).

1.1 Motivation to revise the interface

� Replacement of method getProperties() with its string-based interface by separate methods for
calling up the property definitions and for calling up the choicelists, where each method returns a
specific structure.
(This eliminates the parsing of the string-based property definitions and, thus, avoids problems
with special characters in values and texts.)

� Correspondingly, separate methods for the definition of the property and for the definition of the
choice list of a property (if available).

� Correction of inconsistencies in the previous property definitions.

� Support for new requirements resulting from projects resp. further development of OCD:

– multiple ranges

– raster

– representation of non-selectable values in choice lists

– presentation of extra charges for values in choice lists

� New property type for choice lists whose values are Strings.
(The need to convert OCD values into OFML symbols would then be omitted and associated prob-
lems would be avoided.)

� Improved handling of languages.

1.2 Attributes of properties

The attributes of properties can be subdivided as follows:

1. invariable attributes that determine the type of a property: type of values, formatting specifications,
etc.

2. attributes that depend on the configuration of the object/article: (current) value, choice list, value
range(s), state, position in the list of properties

3. language-dependent names for property and choice list values

In the interface, the attributes of the first group always are transferred in the form of a Vector, which is
referred to as the property definition (see next section).

There are each separate methods for setting and recalling the property definition and the other attributes.

1which is referred to in this document as the told or previous property interface

2

1.3 The property definition

As explained in the previous section, the property definition summarizes all invariant attributes that
determine the type of a property. These always are assigned and retrieved together by means of a Vector,
which has the following structure:

[<type>, <width>, <dec-places>, <choice-list-type>]

The meaning of the attributes is as follows:

1. type (String) – type of the property:

The property type defines the basic way of entering and displaying values as well as their OFML
data type.

The following types are defined (corresponding OFML data type in round brackets):

L length in meter (Float)

The value (in m) is formatted and displayed according to the user settings (in particular
according to the specified unit). When entering, the value converted into m is rounded to
the number of decimal places specified in dec-places before it is transferred to OFML2.
Attribute width is ignored.

A angle in radian (Float)

The value (in rad) is formatted and displayed according to the user settings (in particular
according to the specified unit). When entering, the value converted into rad is rounded to
the number of decimal places specified in dec-places before it is transferred to OFML2.
Attribute width is ignored.

N number (Float, Int)

Depending on dec-places it is an integer or a number with decimal places. Attribute
dec-places defines the number of decimal places to be displayed. When entering, the
entered value is rounded to the specified precision. If dec-places has the value 0, the
representation does not use thousand separators, and entering characters other than deci-
mal digits and a sign in the first place is prevented. Apart from that, an entered value is
displayed and parsed according to the rules of the current oprating system locale.
Attribute width is ignored.

B logical value (Int{0,1})

Attributes width, dec-places and choice-list-type are ignored3. The representation
and the way of input are left to the applications.

S character string (String)

Attributes dec-places and choice-list-type are ignored4. The current property value
always is displayed entirely, regardless of attribute width. Of the escape sequences possible
in OFML Strings, only \" (double quote), \’ (apostrophe) and \\ (backslash) are allowed.
If the value String contains other escape sequences (e.g. a newline escape sequence), the
behavior is undefined.
When entering characters, adding characters is prevented if width is reached or exceeded.
In the case of Unicode, width is the count of code points after conversion to NFC.

T (multiline) text (String)

Attributes width, dec-places and choice-list-type are ignored5. A newline escape
sequence in the current property value leads to a line break in the display. Conversely,
when passing to OFML a line break is replaced by a newline escape sequence.

2Whether and in what form attribute dec-places also is considered for display is up to the applications.
3The corresponding elements of the property definition should have the values 1, 0 resp. @None.
4The corresponding elements of the property definition should have the values 0 resp. @None.
5The corresponding elements of the property definition should have the values 0, 0 resp. @None.

3

Y, YS symbolic choice list (Symbol, String)

Attributes width and dec-places are ignored6.

choice-list-type has to be @FixedSingleV or @FixedMultiV.

"Y" and "YS" essentially behave identically. The difference is that in case of "Y" the value
has type Symbol, while in case of "YS" it has type String.

CT ... special (custom) type (Any)

This type can be used to define non-standardized or proprietary property types. "CT"

is followed by information on the special type. Attributes width, dec-places and
choice-list-type also may be used.

The availability of a special type in the currently used application can/should be checked
on the OFML side using application callback ::ofml::app::isPropTypeSupported() (see
section 3.4).

2. width (Int) – maximum input length:

Relevant only for properties of type "S": defines the maximum input length of the character string7.
For all other types, a more or less reasonable value has to be specified for this attribute in the
property definition8.

3. dec-places (Int) – number of decimal places:

Relevant only for properties of types "L", "A" and "N"9.

4. choice-list-type (Symbol) – type of choice list:

Determines whether a choice list exists and, if so, of what type it is.
Is not relevant for properties of types "B", "S" and "T"10.

@None No choice list available.

Not valid for properties of types "Y" and "YS".

@FixedSingleV Fixed choice list, only a single value can be selected.

The input of additional values is not allowed.

@FixedMultiV Fixed choice list, multiple values can be selected.

The input of additional values is not allowed.

Valid only for properties of types "Y" snd "YS".

@OpenSingleV Open choice list, only a single value can be selected.

The input of additional values is permitted (within the specified value ranges).

Not valid for properties of types "Y" and "YS".

The definition of a property with an invalid combination of property type and choice list type is
rejected, i.e. the call of method setupProperty2() (see 2.1) then has no effect.

6width should have a value that is not smaller than the length of the longest of the possible symbolic values. The value
for dec-places should be 0.

7However, using setPropValue() a character string can be assigned to the property that is longer than width.
8If no reasonable value can be determined, then value 0 should be used.
9For all other types, value 0 has to be specified in the property definition.

10For these types, value @None has to be specified in the property definition.

4

The following table shows the possible combinations of the attributes with the respective old property
type.

type width dec-places choice-list-type old property type OFML date type

L - - @None "f", Fmt "@L" Float
L - - @FixedSingleV "u chf", Fmt "@L" Float
L - - @OpenSingleV "u chf.edit", Fmt "@L" Float
A - - @None "f", Fmt "@A" Float
A - - @FixedSingleV "u chf", Fmt "@A" Float
A - - @OpenSingleV "u chf.edit", Fmt "@A" Float
N - 0 @None "i" Int
N - 0 @FixedSingleV "u chi" Int
N - 0 @OpenSingleV "u chi.edit" Int
N - n @None "f" Float
N - n @FixedSingleV "u chf" Float
N - n @OpenSingleV "u chf.edit" Float
B - - - "b" Int
S n - - "s" String
T - - - "t" String
Y - - @FixedSingleV "ch", "chf" Symbol
Y - - @FixedMultiV "mch" Symbol[]
YS - - @FixedSingleV ("ch", "chf")a String
YS - - @FixedMultiV - String[]
CT * * * "u ..." *

aAlthough the (old) OFML specification actually only allows Symbols as choice list values, the applications of
EasternGraphics also support choice lists whose values are Strings (without language-specific value descriptions). This
is used, for example, in Metatype-based data creation. According to the new interface, such properties behave in principle
like properties of the type ”YS”, with the value and language-specific value description being identical.

1.4 Language–Text mappings

Language-specific names of properties and property values either are realized using a text resource
ID or refer to the language that currently is to be used for product data texts according to method
OiPlanning::getPDLanguage(), see 3.4.

However, some clients require texts in all available languages in order to work efficiently. For this, the
return structures of some methods in section 2.7 contain so-called language–text mappings.

A language–text mapping consists of a Vector of zero or more elements, where each element again is a
Vector made up of two elements:

1. language code (String) according to ISO 639-1 Alpha-2 or an empty String (see below)

2. text in the corresponding language (String)

The language code, if not empty, has to consist of two lowercase letters. Combinations of letters that
do not correspond to an officially registered code are not permitted, but should not lead to errors when
processed by the client.

An empty string in the 1st element is synonymous with an undefined language. The associated texts can
be used by the client as a fallback in the case that the mapping does not contain any text for the (or one)
language required by the client.

A language–text mapping must not contain two entries with the same language code!

5

2 The methods

The methods that were not yet included in the previous interface specification are marked with **new**.

Some methods have been renamed in order to standardize the naming. This affects, amongst others,
the use of ”Property” in the method name: If this word is followed by another word (e.g. ”State”), it is
abbreviated as ”Prop”.

If the purpose is the same but the specification is different, the name of the new method is derived from
the name of the previous method by adding ”2”.

2.1 Property setup

The methods in this group are used to set up a property including position and activation state as well as
to call up the corresponding attributes. Further methods for convenient, simultaneous call up of several
attributes can be found in method group ”client support” (see section 2.7).

� setupProperty2(pKey(Symbol), pDef(Any[4]), pName(String), pPos(Int), pState(Int)) → Void
new

The method creates a property with the specified key (identifier) and assigns it the given definition,
language-specific name, position and activation state.

If there is already a property registered with the specified key but a different definition, the method
call has no effect.

The definition of a property (parameter pDef) is a Vector made up of four elements. The structure
of the vector and the meaning of the elements is described in detail in section 1.3.

The language-specific name of the property (parameter pName) can be changed later with separate
method setPropName(). For details on using the parameter, see there (below).

The position of the property in the property list (parameter pPos) can be changed later with
separate method setPropPos(). For details on using the parameter, see there (below).

The activation state of the property (parameter pState) can be changed later with separate method
setPropState2(). For details on using the parameter, see section 2.2.

The language-specific name, the position and the state also can be changed later using separate
methods (see below).

� getPropDef2(pKey(Symbol) → Any[4] | Void **new**

The method returns the definition of the property with the specified key. The structure of the
returned Vector corresponds to the structure of parameter pDef passed as the property definition
to method setupProperty2().

If no property with the specified key is defined for the implicit instance, the return value has type
Void.

� removeProperty(pKey(Symbol)) → Void

The method removes the property with the specified key from the property list.

If no property with the specified key is defined for the implicit instance, the method has no effect.

� clearProperties() → Void

The method removes all properties from the property list.

� getPropKeys() → Symbol[] **new**
11

The method returns a List containing the keys of all properties currently defined for the implicit
instance.

11is identical to previous method getPropertyKeys()

6

The properties are sorted in ascending order according to their explicit positions. Properties without
an explicit position appear at the end of the list in an undefined order.

� hasProperties() → Int

The method returns 1, if properties are defined for the implicit instance, otherwise it returns 0.

� hasProperty(pKey(Symbol)) → Int

The method returns 1, if a property with specified key is defined for the implicit instance, otherwise
it returns 0.

� setPropName(pKey(Symbol), pName(String)) → Void **new**

The method assigns a language-specific name to the property with the specified key.

Parameter pName can be a text resource ID, which then is resolved language-specifically by the
OFML runtime environment using external resource files. If the parameter is not a text resource
ID, the name has to be given in the language that currently is to be used for product data texts
according to function getPDLanguage() of interface Article [article] (see also 3.4).

If no property with the specified key is defined for the implicit instance, the method has no effect.

� getPropName(pKey(Symbol)) → String | Void **new**

The method returns the language-specific name, which currently is assigned to the implicit instance
for the property with the specified key.

If no property with the specified key is defined for the implicit instance, the return value has type
Void.

� setPropPos(pKey(Symbol), pPos(Int |Void)) → Int | Void **new**
12

The method specifies the desired position in the property list for the property with the given key.

If no property with the specified key is defined for the implicit instance, the method has no effect
and return value has type Void.

If a property with the specified key is defined for the implicit instance, the old position information
is overwritten. If parameter pPos is an integer greater than or equal to 0 and if the desired position
already has been assigned for another property, then that and all subsequent properties in the
position list are moved back by one position. If pPos has type Void or if the parameter has the
value -1, no special position is required for the property. Then it is sorted in the property list after
the properties for that a position explicitly was requested.
Return value is the new position of the property or -1 if no special position is required.

� getPropPos(pKey(Symbol)) → Int | Void **new**
13

The method returns the position of the property with the specified key.

If no special position was requested for the property via setupProperty2() or setPropPos(), the
return value is -1.

If no property with the specified key is defined for the implicit instance, the return value has type
Void.

� setExtPropOffset(pOffset(Int)) → Void

This method assigns an offset for positions of externally defined properties, i.e. properties that are
defined by another instance for the implicit instance.

The offset specifies the smallest position number that may be used for externally defined properties.

The default offset is 0.

12is identical to previous method setPropPosOnly()
13is identical to previous method getPropertyPos()

7

� getExtPropOffset() → Int

The method returns the offset for positions of externally defined properties, i.e. properties that are
defined by another instance for the implicit instance.

The offset specifies the smallest position number that may be used for externally defined properties.
This offset must be called up from an external instance before a property is defined for the implicit
instance and must be taken into account when assigning explicit positions.

2.2 Activation state

� setPropState2(pKey(Symbol), pState(Int)) → Void **new**

The method assigns the given activation state to the property with the specified key.

If no property with the specified key is defined for the implicit instance, the method has no effect.

The state is a combination (addition) of the following flags (bits):

1 the property is visible

2 the property can be edited by the user

4 the input of a value still is required so that the configuration is complete or valid

8 the property currently is not defined for the implicit instance (but can be present in another
configuration)

The flag with the value 8 is reserved for the return structures of certain methods in section 2.7. In
parameter pState of setPropState2() this flag always must have the value 0!
Therefore, the possible combinations for setPropState2() are:

visible editable input property state description
required not def. value (old)

0 0 0 0 0 (-1) for internal use only
1 0 0 0 1 (0) visible, but not editable
1 1 0 0 3 (1) visible and editable
1 1 1 0 7 (n.a.) visible and editable,

input still required

If an invalid value is passed in parameter pState, the method has no effect.

� getPropState2(pKey(Symbol)) → Int **new**

The method returns the current activation state of the property with the specified key.

If no property with the specified key is defined for the implicit instance, the return value is 0.

� invalidateProperties() → Void

The method sets the activation state of all currently defined properties of the implicit instance
whose current state is 3 (active/visible) to 1 (inactive/visible).

This method can be used by clients to prevent the configuration of article instances that could not
be updated.

8

2.3 Value ranges and choice lists

� setPropRanges(pKey(Symbol), pRanges(Any)) → Void **new**

The method assigns zero, one or more14 value ranges to the numeric property with the specified
key.

The relevant property types are "L", "A" and "N". The choice list type of the property must not
be @FixedSingleV15.

If the choice list type of the property is @OpenSingleV, the choice list may contain values that are
outside the assigned value ranges16.

Parameter pRanges either is of type Void or a Vector, consisting of one or more Vectors with 3
elements, each defining a value range:

1. minimum

2. maximum

3. increment (raster)

The specified values for minimum and maximum belong to the range of valid values, i.e., comparison
operators >= resp. <= are applied.

One of the two values for minimum or maximum can be of type Void to indicate a range that has
no lower resp. upper limit.

If the 3rd element is of type Void, there are no further restrictions with regard to the permitted
values within the specified value range. If a minimum is specified (not of type Void), an increment
can be specified in the 3rd element that, starting from the minimum, must be adhered to when
entering values, thus limiting the permitted values within the specified range17.

Invalid value range definitions in parameter pRanges are ignored. Specifically, this applies to the
following situations:

– Both minimum and maximum are of type Void.

– The minimum is of type Void and the increment is not of type Void.

� getPropRanges(pKey(Symbol)) → Any **new**

The method returns the value ranges currently defined for the numeric property with the specified
key.

The return value is of type Void if the implicit instance has no property with the specified key, or if
no value ranges have been assigned to the property using method setPropRanges(). Otherwise the
return value corresponds to parameter pRanges of method setPropRanges().

� setPropChoiceList(pKey(Symbol), pChoiceList(Any)) → Void **new**

The method assigns a choice list to the property with the specified key.

The method only has an effect if the current choice list type of the property is not @None!

The choice list can be passed explicitly as a list of value specifications (see below) or be specified
indirectly by passing a method of the implicit instance that returns the list of value specifications.
In the latter case parameter pChoiceList has type String and contains the name of the method
including parameter brackets and possible constant parameter values18. Per default, the method is
called (every time) when getPropChoiceList() is called (see below)19.

14The property editors of the applications of EasternGraphics currently support only a single value range.
15If the choice list type is @FixedSingleV, this method has no effect.
16because in this case the value ranges define the areas in that the user freely may enter values in addition to the values

from the choice list.
17The property editors of the applications of EasternGraphics currently do not support a raster in a value range. If

necessary, a choice list should be specified in that the raster values explicitly are included.
18OFML programmers should note that the choice list method now has to return a list with value specifications, not a

String with the choice list representation according to the old property interface (method setupProperty ()).
19In contrast to methods getProperties() and getPropertyDef() of the old interface, the call of the method is not left to

the client, but already is executed within getPropChoiceList(). This is necessary on the one hand for convenience method
getPropChoiceList2() (see section 2.7), on the other hand also in order to support the old property definition.

9

A value specification is a Vector consisting of the following elements:

1. value (Any)

2. language-specific description (Void | String)

3. state (Int)

4. amount of extra charge (Void | Float)

5. currency of extra charge (Void | String)

The type of the value (1st element) results from the property type of the current property definition.
However, the value also can be of type Void if the user is to be allowed to explicitly set the
unevaluated state of the property20.

The language-specific description (2nd element) is optional. If a language-specific description is
given (type String), it is displayed in the property editor instead of the value itself, with the
following restrictions:

– With property types "L" and "A" any given language-specific description is ignored.

– With choice list type @OpenSingleV (property type "N") a possibly specified language-specific
description is displayed only in the unfolded choice list itself.

The description should be given in the language that currently is to be used for product data texts
according to function getPDLanguage() of interface Article [article] (see also 3.4). If no language-
specific description is given (type Void), with property types "Y" and "YS" the value is interpreted
as a text resource ID, which is resolved language-specifically by the OFML runtime environment
using external resource files. If the text resource could not be resolved or if the property type is
not "Y" or "YS", the value itself is displayed in the choice list of the property editor.

The state in the 3rd element is a combination (addition) of the following flags (bits):

1 the value is selectable

If the flag has the value 0, the choice list value should be displayed in the choice list, but it
must not be selectable. In the property editors, these values are to be set apart in a suitable
manner from the values that actually can be selected, e.g. by a grayed-out display.

2 the value is not contained in the current choice list of the implicit instance (but can be
contained in another configuration)

This flag is reserved for the return structures of certain methods from section 2.7. When
passed to setPropChoiceList(), this flag always must have value 0!

Thus, the possible values for the 3rd element when passed to setPropChoiceList() are 0 and 1. (An
entry in the choice list with a different state value is ignored.)

Elements 4 and 5 are optional. If they are not of type Void they specify the amount and currency
of the surcharge, which is claimed when the value is selected. The property editors must display
this surcharge in the choice list in a suitable way (e.g. enclosed in brackets after the value or its
description). If necessary, a conversion into the currency that currently is set in the application has
to be executed.

� getPropChoiceList(pKey(Symbol), ...) → Any **new**

The method returns the choice list currently defined for the property with the specified key.

The return value is of type Void if the implicit instance has no property with the specified key or
if no choice list has been assigned to the property using method setPropChoiceList() .

If a choice list explicitly was passed the last time setPropChoiceList() was called, this list directly
will be returned.

Otherwise, if the choicelist is defined indirectly by specifying the name of a method, the behavior
depends on the optional parameter (of type Int):

– If no optional parameter is specified (default) or if it has the value 1, this method is called
first and then its result is returned.

– If the optional parameter has the value 0, the name of the method is returned21.
20This is used, for example, for numerical restrictable OCD properties that currently are not evaluated, see section 3.2.
21i.e., the return value is the same as the value passed in parameter pChoiceList at last call to setPropChoiceList()

10

2.4 Property values

� getPropValue2(pKey(Symbol)) → Any **new**

The method returns the value currently stored in the implicit instance for the property with the
specified key.

The return value can be of type Void if currently no regular value is assigned to the property
according to its type resp. its value range22.

If no property with the specified key is defined for the implicit instance, the return value is of type
Void.

If the type of the implicit instance has a get-method that matches the property

get<Key>() → Any

this method is used by the standard implementation in order to retrieve the current value.

If the type of the implicit instance does not have such a method, the value is retrieved from the
Hash table for dynamic properties (see method getDynamicProps() in interface Base).

See also method forceDynamicProp() in section 2.6.

� setPropValue(pKey(Symbol), pValue(Any)) → Int

The method assigns a new value to the implicit instance for the property with the specified key.

The standard implementation of this method executes the following actions:

1. Verification of compliance with the maximum input length (attribute width) for properties
of type "S" as well as verification of compliance with value ranges and increment (raster) for
numeric properties ("L", "A", "N"). If a violation of the restrictions is detected, the method
is terminated without further actions.

2. If the value to be assigned is equal to the current value of the property, the method is terminated
without further actions.

3. For properties with a choice list of type @FixedSingleV or @FixedMultiV, which was explicitly
assigned as a list of value specifications (see 2.3), it is checked whether the value to be assigned
is contained in the choice list.
If this is not the case, the method is terminated without further actions.

4. Actual value assignment.

If the type of the implicit instance has a set-method that matches the property

set<Key>(pValue(Any)) → Void

this method is used in order to assign the value. As a rule, this method only assigns the value
to a corresponding instance variable. Any further semantics, such as the re-creation of the
geometry or collision tests, are reserved for method propsChanged() (see below).

If the type of the implicit instance does not have a suitable set-method, the value is written
into the Hash table for dynamic properties using the key of the property as the hash key.

See also method forceDynamicProp() in section 2.6.

5. If the property is associated with a property in the product data (OCD), the global product data
manager then evaluates relationships between properties (as a result of which other properties
resp. their values can change).

6. Then method propsChanged() (see below) is called to carry out special treatments. For pa-
rameter pDoChecks value 1 (True) is passed.

7. If the value assignment has been rejected by the product data manager or by method
propsChanged(), all properties are reset to the state at the beginning of setPropValue() and
then method propsChanged() is called again, but this time value 0 (False) is passed for param-
eter pDoChecks.

Return value of the method is 1 if the definition of one or more properties has changed or if properties
have been added or removed. Otherwise the return value is 0.

22In this case, the standard implementation of obsolete method getPropValue() returns the special value @VOID, which
represents a type conflict with non-symbolic properties. For reasons of backward compatibility, this implementation cannot
be changed, what is the reason why new method getPropValue2() is introduced.

11

Some basic OFML types realize the following additional behavior:

Interface Article (OiPart, OiPlElement)
If the update state of the article instance is @Undefined, before the actual value assignment
first an attempt is made to update the article instance. The standard actions (see above) only
take place if the update state of the article instance in the result of that attempt is @Up2Date.

OiPart, OiPlElement, OiProgInfo, OiPropertyObj
If there are properties whose values have changed after the standard actions (see above), an
event of type @PropertyChange is triggered by the OiChangeManager, passing the respective
instance as the publisher and the list of changed properties as the event argument.

OiPlElement
If there are properties whose values have changed after the standard actions (see above), any
existing dimensions are updated (adaptation to possibly changed dimensions).

� checkPropValue(pKey(Symbol), pValue(Any), ...) → Int

The method checks whether the given value can be assigned to the property of the implicit instance
with the specified key.

The return value is 1 if the implicit instance has the specified property and if all checks have been
successfully completed, otherwise 0.

If an additional optional parameter is passed, it specifies whether the passed value, if proven valid,
should be compared to the current value of the property (1) or not (0, default).
If comparison is enabled, the method returns 0 if the passed value is equal to the current value of
the property.

The standard implementation performs the following checks:

– Does the type of the value match the type of the property?

– With properties of type "S":
Is the maximum input length (attribute width) observed?

– With properties with a choice list of type @FixedSingleV:
Is the passed value included in the choice list?

– With (numeric) properties with value ranges:
Is the passed value included in the defined value ranges and does it match any specified
increment (raster)?

� propsChanged(pPKeys(Symbol[]), pDoChecks(Int)) → Int

The method carries out special treatments and checks after changing property values. The properties
whose values have been changed are specified by their keys. Parameter pDoChecks specifies whether
checks have to be carried out or whether it is only necessary to react to changes, e.g. by adjusting
the geometry.
Return value is 1 if the new property values are valid. Otherwise value 0 has to be returned.

Note:

The method is called from the standard implementation of method setPropValue () (see above).

Method propsChanged() usually adjusts the geometry or the material characteristics of the im-

plicit instance.

� changedPropList() → Symbol[]

The method returns a reference to the List of properties whose values have changed during the
processing of method setPropValue(). The properties are specified in the list using their keys.

Note:
Actually, the method is used only by the product data manager during the evaluation of product
data relationships within method setPropValue().

The list is cleared at the beginning of each execution of setPropValue().

12

2.5 Property classes and groups

A property class is a set of properties that are grouped together from a logical, conceptual or other point
of view.
The concept of class is technical. (For example, a class does not have a language-specific description.)

Property groups are sets of properties that are grouped together with regard to the user, and which are
(can be) used for grouping by the property editor of an OFML application.

In contrast to the static character of the classes, the division of the properties into groups can change
dynamically, e.g. depending on the current configuration or on the currently set language.

A property can be assigned to exactly one class and one group. (However, a property does not have to
be assigned to a class or group.)
The assignment to a class is done using the method setPropClass(), to a group using the method
getPropGroupDescriptions() (both see below).

� setPropClass(pPKey(Symbol), pPClass(String)) → Void

The method assigns the property with the given key to the specified class.

� delPropClass(pPKey(Symbol)) → Void

The method removes the property with the given key from the specified class. (The method has no
effect if the specified property currently is not assigned to the specified class.)

� getPropClass(pPKey(Symbol)) → String | Void

The method returns the property class to which the property with the specified key currently is
assigned, or a value of type Void if the property currently is not assigned to a class.

� getPropClasses() → String[]

The method returns a List of all property classes to which the properties of the implicit instance
currently are assigned.

� getPropGroupDescriptions(pLanguage(String)) → Any[]

The method returns a List with descriptions for the currently defined property groups of the implicit
instance.

Each element of the list describes a property group and is a Vector consisting of the following
elements:

1. name (identifier) of the group (String)

2. language-specific (short) description of the group (String)

3. list of the keys of the (currently defined) properties that belong to the group (Symbol[])

The order of the groups in the list defines the order in which the groups should be displayed in the
property editor of an OFML application.
In turn, the order of the properties in element 3 of a group defines the order in which the properties
should be displayed within the group.

Properties that are not explicitly assigned to a specific group are assigned to the dummy group
OI_NONE_PROPCLASS23. The language-specific description (2nd element) for this group is the same
as the identifier of the group. The clients (applications) must use their own text resources for this
group.

23The name of this group better should be OI_NONE_PROPGROUP. However, for reasons of backward compatibility renaming
of the previously used group is/was not done.

13

The standard implementation of the method uses the following procedure:

a) The return of specific groups is prevented if method needPropGroupDescriptions() of the
ProgInfo object responsible for the implicit instance returns value 0 for this instance. In
this case, all (currently defined) properties of the implicit instance are assigned to dummy
group OI_NONE_PROPCLASS.
The positions of the properties within this group result from the positions in the property list
assigned to them, see method setPropPos() (section 2.1).

b) To determine the groups, first a request is made to the global product data manager.
The result may also contain properties that are not assigned to any explicit group. These are
assigned to the group OI_NONE_PROPCLASS.

c) For the properties that were not handled by the product data manager, the groups are deter-
mined as follows:

– Properties that are not assigned to a class are assigned to the dummy group
OI_NONE_PROPCLASS.
Otherwise, a group with the same name is defined for the class of the property24 and the
property is assigned to this group.

– If possible, the language-specific description (2nd element) for a group derived from a
class is delivered in the language that is specified in the parameter of the method. It is
determined as follows:

1. Calling a method on the product database of the series of the implicit instance to
query a language-specific description for the class.
If this method returns a value of type Void25:

2. Search for a text resource in the namespace of the implicit instance, using the class
identifier as the resource key.
If no text resource was found:

3. Use of the identifier of the class itself.

If the method of the product database returns an empty string (step 1), all properties of
the class are assigned to group OI_NONE_PROPCLASS (and the class/group is removed from
the return list).

d) Groups that were defined by the product data manager follow the groups that were derived
from classes (see above) and the group OI_NONE_PROPCLASS. In doing so, the order defined by
the product data manager is retained.

The position in the return list of a group not defined by the product data manager (incl.
OI_NONE_PROPCLASS) results from the lowest number of the positions of the properties con-
tained each, i.e., the group that contains the property with the smallest position number comes
first.

d) The position of a property in a group explicitly defined by the product data manager is
predefined by the product data manager.

The positions of properties in a group not defined by the product data manager (incl.
OI_NONE_PROPCLASS) result from the positions in the property list assigned to them, see
method setPropPos() (section 2.1).

f) Finally, if the ProgInfo object responsible for the implicit instance implements method
getPropGroupDescriptions4Obj(), this method is called passing the reference to the implicit in-
stance, the requested language and the return list determined by the standard implementation
up to this point. This can be used to implement series-specific behavior.

24if this group is not already defined
25for classes that are not defined in the product data

14

2.6 Miscellaneous methods

� getPropInfo(pKey(Symbol), pPropValue(Any), pInfoType(Symbol)) → Any

The method returns the information of requested type for the specified property value.

The return value is of type Void if the instance does not possess the specified property or if no
information of the requested type is available.

The following standard information types are predefined:

@Picture
Name of the image file that illustrates the property value (String)

@Text
textual description (String, can be a text resource)

@HTML
URL of the HTML description (String)

Information types @Text and @HTML currently are not used.

Format, image size and storage location of the image file (information type @Picture) are deter-
mined by the respective OFML application26.

The standard implementation delegates the call to the method getPropInfo4Obj() of the OiProgInfo
instance that is responsible for the implicit instance (if available).
The implementation of OiProgInfo::getPropInfo4Obj() uses corresponding entries in the control data
table proginfo.csv for information type @Picture.

� updateProperties() → Int

The method updates the properties of the implicit instance.

The method is called by the property editor of the application before the properties of the implicit
instance are displayed. Therefore, it offers the opportunity to react both to changes in the data
and to changes in the runtime environment (e.g. changed language setting).

The return value has no specific meaning.

The standard implementation does not perform any actions and returns 1.

Base class OiPlElement implements the method as follows:
If the language to be used for product data texts (method OiPlanning::getPDLanguage(),
section 3.4) has been changed since the creation of the implicit instance or since the last call of
updateProperties(), and if the update status of the implicit instance is @Up2Date, the global product
data manager is called to update the commercial properties27.
The return value is 1.

� getPropTitle() → String

The method provides a brief description of the instance for use in the header of the property editor28.

The standard implementation returns an empty string.

The implementation in the base class OiPlElement (interface Article) uses corresponding entries in
the control data table plelement.csv, which control the generation of the headline. By default,
the generated string is made up of the base article number and the article short text.

� setPropHintText(pKey(Symbol), pHint(String |Void)) → Void **new**

The method assigns a hint text to the implicit instance for the property with the specified key. The
text can be displayed as a hint by an application if the user moves the mouse pointer over the name
of the property in the property editor.

26For the applications of EasternGraphics this is uniformly regulated by the DSR specification [dsr].
27This is done in order to adapt the language-specific descriptions for properties and values to the new/current language.
28It is up to the applications to decide whether the method is actually used. They can use a different scheme when

designing the header.

15

The text can consist of several lines (i.e. contain newline escape sequences).

The text has to be given in the language that currently is to be used for product data texts according
to function getPDLanguage() of interface Article [article] (see also 3.4).

If a value of type Void is passed in parameter pHint, any previously assigned hint text is removed.

� getPropHintText(pKey(Symbol)) → String | Void **new**

The method returns the hint text that currently is assigned to the implicit instance for the property
with the specified key (see setPropHintText() above).

The return value has type Void if no property with the specified key is defined for the implicit
instance, or if currently there ist no hint text assigned for this property.

� forceDynamicProp(pPKey) → Int

The method returns 1 (true) if the value of the property with the specified key is to be stored in
the hash table for dynamic properties29. In this case, possibly existing set- resp. get-methods are
ignored.

By this means, the false use of set- resp. get-methods can be prevented, that serve a purpose other
than storing a property value in a member variable.

This is of particular importance for classes that are used to represent articles (interface Article),

since the global product data manager dynamically can define properties that are associated with

commercial characteristics. As the programming of the class and the creation of the commercial

data usually are carried out separately, it can happen that a commercial characteristic is created

with a name for which there are already suitable set- resp. get-methods, but which serve a

completely different purpose. Therefore, it is strongly recommended to override this method in

all classes that implement interface Article and that define new set- resp. get-methods (which

are not used to store a property value).

If the method is overwritten, the inherited implementation has to be called for all property keys
that are not relevant for the class!

� resetProperties() → Void

The method (re)sets the state (attributes, values) of all properties of the implicit instance to the
initial state (default).

The definition of the default state is type-specific.

The standard implementation takes no action.

The implementation in base OFML classes OiPlElement and OiPart (interface Article) first delegates
the request to the global product data manager (creation of the initial state of the article) and then
to the global planning instance (assignment of application resp. user-specific defaults, e.g. based
on configuration profiles).
The term default refers to the article that currently is represented by the implicit instance, not to
the article that was represented by the instance when it was created30.

29see method getDynamicProps() in interface Base
30With article-polymorphic classes, the article number of an instance can change during its lifetime.

16

2.7 Client support

The methods of this group combine two or more methods of the previous groups and, thus, provide a
more effective way to query property attributes.

� getPropSpec(pKey(Symbol)) → Any **new**

The method returns the extended specification of the property with the specified key.

In addition to the actual property definition, the extended specification – amongst others – also
includes the activation state, the position, value ranges, the current value (along with an optional
value description) and the (optional) name of the image file (for the current value).
(The methods whose functionality is included in getPropSpec() are mentioned below for the indi-
vidual elements of the return structure.)

If no property with the specified key is defined for the implicit instance, the return value is of type
Void, otherwise it is a Vector currently consisting of the following elements31:

1. property type (String)

2. maximum input length (Int)

3. number of decimal places (Int)

4. type of choice list (Symbol)

5. language-specific name (String)

6. position (Int)

7. activation state (Int)

8. value ranges (Any)

9. current value (Any)

10. language-specific description for the current value (Void | String)

11. name of the image file that illustrates the current value (Void | String)

12. language-specific hint text for the property (Void | String)

13. property class (Void | String)

Elements 1 to 4 correspond to the actual property definition, which is returned by method call
getPropDef2(pKey) (see section 1.3).

Elements 5 and 6 correspond to the result of method calls getPropName(pKey) resp.
getPropPos(pKey) (see 2.1).

Element 7 corresponds to the result of method call getPropState2(pKey) (see 2.2).

Element 8 corresponds to the result of method call getPropRanges(pKey) (see 2.3).

Element 9 corresponds to the result of method call getPropValue2(pKey) (see 2.4).

If it is not of type Void, element 10 contains the language-specific description, which is to be
displayed instead of the current value itself.
If the current property value (element 9) is of type Void, element 10 must not necessarily also be
of the type Void, but can contain a string that describes the current state32.

For properties with a choice list of type @FixedSingleV the description is determined using the
following procedure33.

1. If a language-specific description (non-empty string) is specified in the choice list for the value,
this is used, otherwise:

2. Call of (obsolete) method getChLPropValueText() (appendix B).

If this call returns a value of the type String and the string is not empty, this is used, otherwise:

31If needed, the vector can contain additional elements in the future.
32This is used, e.g., for currently unassigned numerical restrictable OCD characteristics, see section 3.2.
33In applications that still use the old interface, this was done in the property editor itself. This is no longer necessary in

applications that use the new interface, as this is encapsulated by the method getPropSpec().

17

3. Determination of the text resource for the Symbol or the String (insofar as the passed value
is of these two types).

If a text resource could be determined, this is used, otherwise:

4. The string representation of the value is used.

In steps 1 and 2, the language is used that is returnd by method
OiPlanning::getPDLanguage() (see 3.4).

Element 11 corresponds to the result of method call getPropInfo(pKey, <element 9>,

@Picture) (see 2.6).

Element 12 essentially corresponds to the result of method call getPropHintText(pKey) (see 2.6).
If necessary, an additional text can be generated that describes, e.g., the currently defined value
ranges of a numerical property.

Element 13 corresponds to the result of method call getPropClass(pKey) (see 2.5).

� getPropSpecs() → Any[] **new**

The method returns a List with the extended specifications of the properties currently defined for
the implicit instance.

The elements in the list each describe a property and consist of a two-place Vector:

1. property key (Symbol)

2. property specification (Any), corresponds to the result of method call
getPropSpec(<element 1>) (see above)

The properties are sorted in the list according to their positions (i.e., the order corresponds to the
order of the list returned by getPropKeys(), section 2.1).

� getPropChoiceList2(pKey(Symbol)) → Any **new**

The method returns detailed information about the choice list currently defined for the property
with the specified key.

The method combines the functionality of getPropChoiceList() (see 2.3) and getPropInfo() for in-
formation type @Picture (see 2.6). (This saves the client separate calls of getPropInfo() for each
individual value in the choice list).

The return value is of type Void if the implicit instance has no property with the specified key, or
if no choice list has been assigned using method setPropChoiceList().
Otherwise the return value is a List of Vectors34. Each vector contains the information about a
value from the choice list and currently consists of the following elements35:

1. value (Any)

2. language-specific description (Void | String)

3. state (Int: 0 = invalid, 1 = valid)

4. amount of extra charge (Void | Float)

5. currency of extra charge (Void | String)

6. name of the image file that illustrates the value (Void | String)

The meaning of elements 1 to 5 is described in more detail in the specification of method
setPropChoiceList() (see 2.3).

If no language-specific description (element 2) was given when specifying a value via
setPropChoiceList() (element is of type Void), and if the type of the property is "Y" resp. "YS",
the value is interpreted as a text resource ID, which is resolved now by getPropChoiceList2()
using external resource files. In doing so, the language is used that is returned by method
OiPlanning::getPDLanguage() (see 3.4). If the resolution of the text resource is not successful,
the value itself is used as its description (for which purpose the value is converted into a String with
properties of type "Y").

Element 6 corresponds to the result of method call getPropInfo(pKey, <element 1>, @Picture)

(see 2.6).
34Note: the list may be empty (see 3.3)!
35If needed, the vector can contain additional elements in the future.

18

� getAllPropSpecs(pRequiredState(Int)) → Any[] **new**

The method returns a List with the extended specifications of all possible properties for the implicit
instance (i.e., including those properties that currently are not defined for the implicit instance).

Currently, the method considers only properties that are generated by the global product data
manager for commercial characteristics (OCD) of the article, which is represented by the implicit
instance.

The return value corresponds to that of getPropSpecs() with the following changes/extensions:

– Properties that are known to never have the state (see getPropState2(), section 2.2) required
in parameter pRequiredState are not included in the return list.

– Element 5 of a property specification (language-specific name) contains a language–text map-
ping (see section 1.4).

– For properties that currently are not defined for the implicit instance, the flag (bit) with the
value 8 is set in the activation state (see setPropState2(), section 2.2).
Then, elements 9 to 11 have a value of type Void.

– Element 10 of a property specification (language-specific description of the current value) either
is a value of type Void or a language–text mapping.

– Element 12 of a property specification (language-specific hint text) is a language–text mapping
resp. an empty Vector if no hint texts are available.

� getDefaultPropGroupSpecs() → Any[] **new**

The method returns a List with the descriptions of the standard groups, i.e. the groups that are
defined independently of the configuration of the implicit instance and independently of a specific
language36.

Each element in the return List is a Vector consisting of the following elements:

1. identifier of the group (String)

2. List of keys of the properties belonging to the group (Symbol[])

3. language–text mapping (Any[]) with the language-specific (short) descriptions for the group

Currently, the method considers only properties that are generated by the global product data
manager for commercial characteristics (OCD) of the article, which is represented by the implicit
instance.

All properties that are returned by method getAllPropSpecs() (see above) should also be contained
in the groups that are returned by getDefaultPropGroupSpecs().

� getAllPropValueInfos(pKey(Symbol), pPClass(String)) → Any **new**

The method returns information about all possible values of the choice list for the property with
the specified key and the specified class.
(I.e., the method also provides information about the values that are not contained in the current
choice list of the implicit instance).

Currently, the method considers only properties that are generated by the global product data
manager for commercial characteristics (OCD) of the article, which is represented by the implicit
instance.

The return value corresponds to that of getPropChoistList2() with the following changes/extensions:

– If the method is called for a property that is not generated by the global product data manager,
the return value is of type Void.

– The language-specific description of the value (element 2 of a single value specification) is a
language–text mapping (see section 1.4).

– For values that are not contained in the current choice list of the implicit instance, the flag
(bit) with the value 2 is set in the status (element 3) (see setPropChoiceList(), section 2.3).

36The semantics and purpose of this method differ significantly from method getPropGroupDescriptions(), see 2.5.

19

3 Other aspects

3.1 Options

Properties of types "Y" and "YS" can be used to implement options, i.e. properties that can, but does
not have to be evaluated by the user. For this purpose, a special value is added to the choicelist, typically
@VOID resp. "VOID", with a corresponding text resource (English e.g. ”not specified”).

However, this is transparent for the clients (e.g. property editors), i.e., this special value appears as a
completely ”normal” value from the choice list.

3.2 Restrictable OCD properties

Restrictable OCD properties either are realized with OFML properties of types "Y" resp. "YS" or (in the
case of numeric characteristics) with properties of type "N" with a choice list of type @FixedSingleV.

These properties can have the state ”not (yet) specified”. In the case of symbolic restrictable properties,
this state is represented by the reserved special value @UNSPECIFIED resp. "UNSPECIFIED" with a corre-
sponding text resource (element 9 in the return Vector of method getPropSpec(), section 2.7). In the case
of numerical restrictable properties, this state is represented by a value of type Void, but element 10 in
the return Vector of method getPropSpec() contains a language-specific description that corresponds to
the text resource for @UNSPECIFIED.

Depending on the setting in the product data, the choice list of restrictable properties, in addition
to the actual values, also can contain the special value which enables the user to explicitly set the
state ”not specified”. For elements 1 and 2 in the return Vector of methods getPropChoiceList() and
getPropChoiceList2() (see section 2.7) the same statements apply as above for elements 9 and 10 in the
return Vector of method getPropSpec() (current property value).

Similar to options (see previous section), the subject of restrictable properties is transparent for the clients
(property editors), too.

3.3 Empty choice lists

From a conceptual point of view, the choice list of a property must not be empty. However, this may hap-
pen due to problems or errors in the product relationship knowledge. In such a case and insofar no value
has been explicitly assigned to the property37, the standard implementation of method getPropSpec()
(section 2.7) returns a language-specific text in element 10 that describes this state (English e.g. ”no
value available”).

3.4 Application callbacks

� ::ofml::app::isPropTypeSupported(pPType(String)) → String **extended**

The function returns "1" (true), if the application supports the property type specified in the
parameter, otherwise "0" (false).

An application whose property editor has been changed over to the new interface returns "0" for
all property types of the old interface.

� ::ofml::app::getPDLanguage(pPID(Symbol)) → String **new**

The function returns the language to be used for product data texts and property-related texts for
article instances that belong to the OFML program (series) that is specified in the parameter.

The language is determined by comparing the language references currently set in the application
by the user and the languages supported by the package currently installed for the OFML program.

37getPropValue2() returns a value of type Void

20

If none of the languages supported by the OFML package corresponds to the language references
currently set by the user, the first language from the list of languages supported by the package is
used.

The call of this application callback is encapsulated by following OFML methods:

– Default implementation of function

getPDLanguage() → String

of interface Article [article].

– OiPlanning::getPDLanguage(pArg(Any)) → String |Void

The method returns the language to be used for product data texts and property-related texts
for article instances that belong to the specified OFML program or for the specified article
instance.

Parameter pArg may be the identifier of an OFML program (Symbol), a ProgInfo object
(OiProgInfo) or an article instance. (In case of an invalid parameter return value is of type
Void.)

This implementation uses application callback ::ofml::app::getPDLanguage() passing the speci-
fied program identifier resp. the ID of the specified ProgInfo object38 resp. the OFML program
of the specified article instance39.

38according to method OiProgInfo::getID()
39according to method getProgram() of interface Article

21

A Alphabetical index of methods

Preliminary remarks:

The obsolete methods (section B) are not listed here.

New methods are marked with (N).

changedPropList() ... 12

checkPropValue() ... 12

clearProperties() ... 6

delPropClass() ... 13

forceDynamicProp() ... 16

getAllPropSpecs() ... 19 (N)

getAllPropValueInfos() ... 19 (N)

getDefaultPropGroupSpecs() ... 19 (N)

getExtPropOffset() ... 8

getPropChoiceList() ... 10 (N)

getPropChoiceList2() ... 18 (N)

getPropClass() ... 13

getPropClasses() ... 13

getPropDef2() ... 6 (N)

getPropGroupDescriptions() ... 13

getPropHintText() ... 16 (N)

getPropInfo() ... 15

getPropKeys() ... 6 (N)

getPropName() ... 7 (N)

getPropPos() ... 7 (N)

getPropRanges() ... 9 (N)

getPropSpec() ... 17 (N)

getPropSpecs() ... 18 (N)

getPropState2() ... 8 (N)

getPropTitle() ... 15

getPropValue2() ... 11 (N)

hasProperties() ... 7

hasProperty() ... 7

invalidateProperties() ... 8

propsChanged() ... 12

removeProperty() ... 6

resetProperties() ... 16

setExtPropOffset() ... 7

setPropChoiceList() ... 9 (N)

22

setPropClass() ... 13

setPropHintText() ... 15 (N)

setPropName() ... 7 (N)

setPropPos() ... 7 (N)

setPropRanges() ... 9 (N)

setPropState2() ... 8 (N)

setPropValue() ... 11

setupProperty2() ... 6 (N)

updateProperties() ... 15

23

B Obsolete methods

The following methods (in alphabetical order) are no longer (officially) included in the new specification
of the interface. However, for reasons of backward compatibility, they are retained in the implementation.

� getChLPropValueText(pPKey(Symbol), pPValue(Any), pLanguage(String)) → String | Void

The method returns the language-specific description of the specified value of the property with the
given key in the specified language.

The return value is of type Void if no description can be provided.

The method is called during the determination of the language-specific description of the current
value of a property with a choice list, see method getPropSpec()40.

� getProperties() → String

Replaced by getPropSpecs().

� getPropertyDef(pKey(Symbol)) → Any[]

Replaced by getPropDef2().

� getPropertyKeys() → Symbol[]

Renamed getPropKeys().

� getPropertyPos((pKey(Symbol)) → Int | Void

Renamed getPropPos().

� getPropClassDescriptions(pLanguage(String)) → Any

Renamed getPropGroupDescriptions().

� getPropState(pKey(Symbol)) → Int

Replaced by getPropState2().

� getPropValue(pKey(Symbol)) → Any

Replaced by getPropValue2().

� getVisiblePropValues() → Void

Replaced by getPropChoiceList().

� setPropPosOnly(pKey(Symbol), pPos(Int)) → Int | Void

Renamed setPropPos().

� setPropState(pKey(Symbol), pState(Int)) → Void

Replaced by setPropState2().

� setupProperty(pKey(Symbol), pDef(Any[5]), pPos(Int)) → Void

Replaced by setupProperty2().

40Actually, this method currently no longer has any significance. It was introduced mainly to solve performance problems
with articles in an outdated and no longer supported product data format. In the OFML base classes the method has an
empty implementation and, thus, no effect.

24

C Modification history

Version 2.9 (2023-09-14):

� Clarification regarding method setupPropert2() (section 2.1):
If there is already a property registered with the specified key but a different definition, the method
call has no effect.

� Method getPropChoiceList() (section 2.3) now accepts an additional optional parameter indicating
whether the method should be called if the choice list is defined indirectly by specifying the name
of a method.
Default (backward compatible behavior) is 1 (yes).

Version 2.8 (2023-05-04):

� Clarifications regarding the standard implementation of method setPropValue() in section 2.4.

Version 2.7 (2023-03-17):

� Clarifications in the specification of method getPropGroupDescriptions() in section 2.5.

Version 2.6 (2022-09-14):

� Clarification on the handling of invalid value range definitions when passing to method
setPropRanges() (section 2.3).

� Added missing specification of method checkPropValue() in section 2.4.

Version 2.5 (2022-05-02):

� Refering to function getPDLanguage() of interface Article in section 3.4.

Version 2.4 (2021-12-22):

� Method getPropInfo() is now decribed in section 2.6.

� Method getChLPropValueText() is now declared as obsolete (and described in appendix B).

� The procedure for determining the language-specific description of the current value of a property
with a choicelist of type @FixedSingleV is now described in section 2.7 with method getPropSpec()
(instead of getChLPropValueText().

In doing so, the procedure has been corrected: a text specified in the choicelist specification for the
value takes precedence over any text provided by getChLPropValueText() or by a text resource.

Version 2.3 (2021-10-12):

� Small correction and more detailed description regarding the return structure of methods
getPropSpec() and getPropChoiceList2().

� Clarification on the use of method getPropTitle().

Version 2.2:

� First english version.

25

	1 Introduction and General definitions
	1.1 Motivation to revise the interface
	1.2 Attributes of properties
	1.3 The property definition
	1.4 Language–Text mappings

	2 The methods
	2.1 Property setup
	2.2 Activation state
	2.3 Value ranges and choice lists
	2.4 Property values
	2.5 Property classes and groups
	2.6 Miscellaneous methods
	2.7 Client support

	3 Other aspects
	3.1 Options
	3.2 Restrictable OCD properties
	3.3 Empty choice lists
	3.4 Application callbacks

	A Alphabetical index of methods
	B Obsolete methods
	C Modification history

