
 

 

© 2023 EasternGraphics GmbH    Control Data Tables    1/47 

Application Notes  (2023-09-18) 

AN-2006-01:  Control Data Tables 
 

Contents 

1.  Introduction ........................................................................................................................................................ 3 

2.  Table  proginfo .............................................................................................................................................. 4 
2.1.  General options ........................................................................................................................................... 4 
2.2.  Property related options ............................................................................................................................. 5 
2.3.  2D layer name ............................................................................................................................................. 7 
2.4.  Property value pictures ............................................................................................................................... 8 
2.5.  Common properties .................................................................................................................................... 9 
2.6.  Order generation (article lists) ................................................................................................................... 11 

3.  Table  plelement .......................................................................................................................................... 15 

4.  Table  anyarticle........................................................................................................................................ 18 

5.  Table  epdfproductdb ................................................................................................................................ 19 
5.1.  General options ......................................................................................................................................... 19 
5.2.  Coding schemes ......................................................................................................................................... 21 
5.3.  Specific options of native OCD implementation........................................................................................ 23 

6.  Tables for Planning Groups ............................................................................................................................... 29 
6.1.  Common options ....................................................................................................................................... 30 
6.2.  Specific options for xOiJointPlGroup ............................................................................................... 35 
6.3.  Specific options for xOiLayoutGroup .................................................................................................. 37 
6.4.  Specific options for xOiTabularPlGroup .......................................................................................... 38 
6.5.  Specific options for xOiCustomPlGroup ............................................................................................ 42 

Appendix ............................................................................................................................................................... 44 
A.1  OFML keywords .......................................................................................................................................... 44 
A.2  Table non_pd_properties ................................................................................................................ 45 
A.3  Document history....................................................................................................................................... 46 

 

 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    2/47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legal remarks 

© 2023 EasternGraphics GmbH | Albert-Einstein-Straße 1 | 98693 Ilmenau | GERMANY 

This work (whether as text, file, book or in other form) is copyright. All rights are reserved by  
EasternGraphics GmbH. Translation, reproduction or distribution of the whole or parts thereof is permitted only 
with the prior agreement in writing of EasternGraphics GmbH. 

EasternGraphics GmbH accepts no liability for the completeness, freedom from errors, topicality or continuity 
of this work or for its suitability to the intended purposes of the user. All liability except in the case of malicious 
intent, gross negligence or harm to life and limb is excluded. 

All names or descriptions contained in this work may be the trademarks of the relevant copyright owner and as 

such legally protected. The fact that such trademarks appear in this work entitles no-one to assume that they 

are for the free use of all and sundry. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    3/47 

1.  Introduction 

The behaviour of standard implementations of OFML base types, used by the OFML runtime system, may be 

controlled by means of special data tables, the so called control data tables. This approach avoids the need for 

deriving special sub classes in order to achieve a specific behaviour. 

Each OFML base type which introduces a control data table, implements a method openDataTable() which 

declares the name of the table. Derived subclasses may declare and use additional information (data elements) 

for/from this table. 

The table may exist as a single CSV table or may be included in the EBase database ofml.ebase, which takes 

precedence over the single CSV table. 

Each data table has the same structure: 

• Field 1 specifies the type of information provided in the record. 

• Field 2, the argument field, is optional and may be used to differentiate the usage and/or the scope of 
the information. 

• Field 3, the value field, contains the actual information. 

Here is the table description for the EBase configuration file: 

table <name> <name>.csv mscsv 

fields 3 

field  1 type  vstring delim ; trim hidx link 

field  2 args  vstring delim ; trim 

field  3 value vstring delim ; trim 

The tables or the ofml.ebase database have to be located - if not otherwise specified - in the library path of current 

OFML program (series). ISO-8859-1 (Latin-1) is used as the character set. 

The possible/required data types and the according format of argument and value fields are declared in the 

specification of the methods of the OFML base types using a specific information type. In the subsequent 

sections, however, the description of the various information types takes place on the basis of their affiliation to 

a concrete table. 

This version of application note reflects the state of OFML base packages OI version 1.43.0 and XOI version 1.60.0 

as well as of EAI 1.32.0 (native OCD implementation). The corresponding required application versions are 

pCon.planner >= 8.9, pCon.basket >= 1.13.10 and EAIWS >= 4.14 (online apps)1. 

 
1 Releases in October 2023 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    4/47 

2.  Table  proginfo 

This table is used to control the behaviour of the so called ProgInfo object registered for a given OFML series 

(program). This object realizes common behaviour concerning the series as a whole. The concrete type of the 

ProgInfo object is specified in the DSR configuration file for the given OFML series under key proginfo. 

The table is introduced by OFML base type OiProgInfo and is used also by derived class xOiProgInfo. 

If the table is not found in the regular library directory of current OFML series it will be looked up in the directory 

specified in DSR configuration file for current series under key proginfodb_path. 

2.1.  General options 

@AutoDecorationPath 

• Value field specifies the path of the directory containing specific templates to be used during automatic 
decoration for articles belonging to the program (series). 

• For more information about automatic decoration see separate application note. 

• Used by method xOiProgInfo::getAutoDecorationPath(). 

@CheckPrice4Consistency 

• If value field contains 1, articles belonging to this program will be marked as inconsistent, if method 

getArticlePrice() of interface Article returns NULL for a given article. 

• Note: inconsistent articles cannot be ordered! 

• Used by method xOiProgInfo::checkObjConsistency(). 

@DynamicAttPt 

• Used by method OiProgInfo::getDynamicAttPts(), which delivers a list of [key, dir] pairs for all 

attach points occurring in the program (series) and that cannot be determined by calling 

getAttPtsOrder() (OFML Interface AttachPts) on initial configurations of the articles of the program due 

to dynamic determination in getAttPtsOrder(), e.g. based on height raster. (This information may be used 

by tools generating feedback data for special 3D insertion feedback modes of an OFML application.) 

• Value field contains one or more [key, dir] vectors to be added to the result list of 

getDynamicAttPts() (multiple pairs have to be separated by commas). 

@MatPackage 

• Value field specifies the name of the OFML package containing the material definition files to be used 

for the articles belonging to this program. 

• Used by methods OiProgInfo::getMatPackage() and OiProgInfo::getMatName(). 

@PricesOnRequest 

• If value field contains 1, articles belonging to this program will be tagged with message “price on 

request”, if method getArticlePrice() of interface Article for a given article returns NULL or a sales price 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    5/47 

with value 0.02. 

• Note: this entry has no effect, if there is an entry of type @CheckPrice4Consistency with value 

1! 

• Used by method xOiProgInfo::getPricesOnRequest(). 

2.2.  Property related options 

@EPDFPropValPrefix 

• Value field contains the prefix that has to be put in front of the names of EPDF resp. OCD property values 

starting with a numeric character when converting them into OFML Symbols for choice lists of according 

OFML properties. 

• Note: OFML Symbols may not start with a numeric character. 

• Default prefix is "S". Another prefix has to be used, e.g., if there are property values whose names 

themselves start with "S"! 

• Used by method xOiProgInfo::getEPDFPropValPrefix(). 

@ForceDynamicProperties 

• If there is an entry with this data type and if its value is 1 (true), method forceDynamicProp() of OFML 

interface Property will be applied for all planning elements (articles) belonging to this program (series). 

• Note: if method forceDynamicProp() returns True for a given property key, the value of the property will 

be stored in the table for dynamic properties, thus deliberately ignoring possibly existing get- resp. set-

methods in order to avoid conflicts with properties dynamically generated by the global product 

manager for configurable properties specified in OCD data. 

• Example: if an OFML type, used to represent articles, implements methods setFoo() and getFoo(), there 

is a certain chance, that the OCD data creator adds a property Foo to an article represented by the 

OFML type. The global product manager then generates an according OFML property with key @Foo. If 

forceDynamicProp() would not return 1 for key @Foo, the value of the property would be stored and 

retrieved using the methods setFoo() resp. getFoo(), what might not be the purpose of these methods. 

Therefore, it is recommended to implement forceDynamicProp() and return 1 for all set-/get-method 

pairs, which could be misused by an according OCD property. However, for reasons of backward 

compatibility, this handling has to be enabled by an entry of this type with value 1. 

• Used during standard implementations of methods getPropValue() and setPropValue() of OFML 

interface Property. 

@Property 

• Used during initialization of an instance of OiProgInfo. 

• Defines a fix property (in contrast to common properties set up dynamically, see section 2.4). 

• The value field has to be of following format: 

[prop_key, prop_def, position, init_value, state], 

 
2In the current implementation the „tag“ will be appended to the article long text. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    6/47 

where the first three vector elements specify the parameters to be passed to method setupProperty() of 

OFML interface Property. 

The elements init_value and state are optional. If init_value is given it will be assigned as 

initial value to the property after setupProperty(). If state is given it will be passed to setPropState(). 

The following property types may be specified in prop_def: “s”, “b”, “i”, “u chi”, “f” and “u chf”. 

@UseUnspecPropVal4OdbInfo 

• Specifies, whether properties with value @UNSPECIFIED have to be represented in the ODB info hash 

table (1) or not (0). Default: 1. 

• Used by method OiProgInfo::useUnspecPropVal4OdbInfo() called from hook method OiOdbPlElement:: 

useUnspecPropVal4OdbInfo() in OiOdbPlElement::getBasicOdbInfo(). 

@UseVoidPropVal4OdbInfo 

• Specifies, whether properties with value @VOID have to be represented in the ODB info hash table (1) 

or not (0). Default: 1. 

• Used by method OiProgInfo::useVoidPropVal4OdbInfo() called from hook method OiOdbPlElement:: 

useVoidPropVal4OdbInfo() in OiOdbPlElement::getBasicOdbInfo(). 

@NeedPropGroupDescriptions 

• Specifies, whether (possible) different property groups of current OFML instance have to be displayed 

in the property editor (1) or not (0). Default: 1. 

• Used by hook method OiProgInfo::needPropGroupDescriptions() called from standard implementation 

of method getPropGroupDescriptions() of OFML interface Property. 

• Property groups will be displayed, if there is no control data table proginfo, or if the table does not 

contain a matching entry of this type, or if the first matching with a valid value in the value field there 

contains the value 1. 

• An entry matches if the argument field is empty or if all conditions specified in the argument field are        

satisfied. A condition has to be given as a vector [condition_type,condition_value]. 

Multiple conditions have to be separated by commas. 

• Currently, the following condition types are supported: 

@Category 

is true, if the instance belongs to one of the categories specified in the value (Vector of Symbols) 

@CategoryNOT 

is true, if the instance does not belong to one of the categories specified in the value (Vector of 

Symbols) 

  



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    7/47 

@Article 

is true, if the instance represents an article3 and if its base article number starts with one of the 

article number root strings specified in the value (Vector of Strings) 

@ArticleNOT 

is true, if the instance represents an article4 and if its base article number does not start with 

one of the article number root strings specified in the value (Vector of Strings) 

@Type 

is true, if the type of the instance is one of the types specified in the value (Vector of Strings) or 

if it is a sub type of them. 

Types have to be fully qualified (i.e., including the OFML package name). 

@TypeNOT 

is true, if the type of the instance is not one of the types specified in the value (Vector of Strings) 

and if it is not a sub type of them. 

Types have to be fully qualified. 

2.3.  2D layer name 

The information types described in this subsection are used by method OiProgInfo::get2DLayer(), which delivers 

the name of 2D layer to be used if 2D data for a given article does not define an explicit layer. The method creates 

a layer name that is composed of the following (optional) components: 

1. prefix 
2. OFML manufacturer ID and/or commercial manufacturer ID (normally, only one of both) 
3. separator 
4. OFML series ID and/or commercial series ID (normally, only one of both) 
5. suffix 

Which of these components will be included into the layer name is controlled by the appearance of following 

information types: 

@2DLayerPrefix 

• value field contains the prefix for layer name 

@2DLayerSuffix 

• value field contains the suffix for layer name 

@2DLayerSeparator 

• value field contains the String to be used to separate manufacturer and series IDs 
 

 
3 The instance represents an article, if the class of the instance implements OFML interface Article and the base article 
number returned by method getArticleSpec() is not an empty String. 
4 see above 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    8/47 

@2DLayerUseManufacturerID 

• value field contains 1, if commercial manufacturer ID has to be included into layer name 

@2DLayerUseSeriesID 

• value field contains 1, if commercial series ID has to be included into layer name 

@2DLayerUseManufacturer 

• value field contains 1, if OFML manufacturer ID has to be included into layer name 

@2DLayerUseSeries 

• value field contains 1, if OFML series ID has to be included into layer name 

2.4.  Property value pictures 

@PropInfoPicPrefix 

• The value field specifies a prefix for picture file names for values other than @VOID (or for all values 

including @VOID if table does not contain entries of type @PropInfoPic4Void, see below). 

• The file name then will be constructed from the prefix and the string representation of the property 

value (without leading character @). If the property is associated with a property in product database, 

the value ID from product database will be used instead. 

• Used by method OiProgInfo::getPropInfo4Obj(). 

@PropInfoPic4Void 

• The value field specifies the picture file name for value @VOID. 

• Used by method OiProgInfo::getPropInfo4Obj(). 

There may be multiple entries of types @PropInfoPic4Void and @PropInfoPicPrefix. Whether a 

given entry will be used may be controlled by the conditions given in argument field (2. field). If this field is empty, 

the entry will be used without checks. If it contains conditions, they all have to be evaluated as True in order to 

make entry effective. The first matching entry will be used. 

Each condition is given as vector [condition_type, condition_value]. Multiple conditions have to 

be separated by commas. Currently, the following condition types are supported: 

    @PropKey 

is True, if the key of affected property starts with one of the strings specified in the condition value. 

Condition value may be a single string or a vector of strings. 

    @PropKeyNOT 

is True, if the key of affected property does NOT start with one of the strings specified in the condition value. 

Condition value may be a single string or a vector of strings. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    9/47 

    @PropName 

is True, if affected property is associated with a property in product database and the name of that property 

starts with one of the strings specified in the condition value. 

Condition value may be a single string or a vector of strings. 

    @PropNameNOT 

is True, if the affected property is associated with a property in product database and the name of that 

property does NOT start with one of the strings specified in the condition value. 

Condition value may be a single string or a vector of strings. 

    @PropValue 

is True, if string representation of property value is one of the strings specified in the condition value. 

Condition value may be a single string or a vector of strings. 

Examples 

1. 

Use prefix for all properties whose key string starts with "Mat", but not for properties @MatGroup and 

@MatType: 

@PropInfoPicPrefix;[@PropKey,"Mat"],[@PropKeyNOT,["MatGroup","MatType"]];::foo::bar:: 

2. 

Within a furniture program property value "LG" has a different meaning in two different properties OPTION1 

and OPTION2. Therefore, for OPTION1 the normal prefix has to be used, for OPTION2 a special prefix: 

@PropInfoPicPrefix;[@PropName,"OPTION2"];::foo::bar::OPTION2 

@PropInfoPicPrefix;;::foo::bar:: 

Note: Because the first matching entry will be used, the order of both entries has to be as stated above in order 

to achieve the desired result. 

2.5.  Common properties 

See also application note on global variant configuration. 

@CommonProps4ProgInfo 

• Common properties for the ProgInfo object itself are generated only if the table contains an entry with 

this type and if its value is 1. 

• Used by method xOiProgInfo::getProperties(). 

@NonPlElements4CommonProps 

• If there is an entry with this info type and its value is 1, objects belonging to the program will be 

considered for generation of common properties even if they are not located on top level of planning 

hierarchy. 

  



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    10/47 

• Background: normally, only elements on top planning level will be considered for generation of common 

properties for a temporary marked group of objects. However, some applications or application modes 

might allow to mark objects not on top planning level. In this case it might be useful, to consider non 

top planning elements, too. 

• Used by method xOiProgInfo::nonPlElements4CommonProps(). 

@IgnorePClass4CommonProps 

• If there is an entry with this info type and its value is 1, property classes of properties of objects 

belonging to the program will be ignored during collection of common properties. 

• Note: normally, properties with same name but belonging to different property classes will get different 

corresponding properties in the set of common properties, because – conceptually – they are considered 

as different properties. However, in some data setups, the different property classes may not have a 

special meaning. In these cases it might be more appropriate to use a single common property for these 

properties. 

• Used by method xOiProgInfo::ignorePClass4CommonProps(). 

@CommonProperty 

• Value field contains a comma separated list of property names. All properties with the given names are 

denoted as common ones. 

• Special property name "ALL_PROPERTIES" marks all properties as common ones. 

• Used by method xOiProgInfo::isCommonProperty2(). 

@CommonPropPrefix 

• Value field contains a comma separated list of property name prefixes. All properties whose names start 
with the given prefixes are denoted as common ones. 

• Used by method xOiProgInfo::isCommonProperty2(). 

There may be multiple entries for both types @CommonProperty and @CommonPropPrefix. 

If a property is associated with property in product data, in the value fields have to be specified the property 

names resp. prefixes as used in the product database rather than property keys generated by the global Product 

Data Manager. 

Note: 

If using an own class derived from xOiProgInfo, make sure there is no implementation of isCommonProperty(): 

this implementation would not have any effect because method isCommonProperty2() (implemented in 

xOiProgInfo) takes precedence. 

 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    11/47 

2.6.  Order generation (article lists) 

@OrderInfo 

• Entries of this type may be used in order to control the appearance of generated order listings. (However, 

the setting affects only the articles belonging to this OFML series.) 

• Used by method xOiProgInfo::getOrderInfo(),  called during generation of order listings. 

• The argument field is used to determine, for which values of method's parameters the value field of the 

entry has to be used. 

The format of the argument field is a Vector containing [parameter,value] pairs, where the 

possible parameters are @OrderMode, @OrderDepth, @Region and @InfoType: 

 Parameter @OrderMode specifies the mode of order generation used by the application (typically, 

this is @Standard) whereas parameter @OrderDepth specifies the maximum depth of 

generated order structure (where 0 denotes no restriction for order structure depth). 

These parameters are optional. If no value for @OrderMode or @OrderDepth is given, the entry 

matches each value for the corresponding order generation parameter. This is the normal usage for 

entries of these types (because special parameters are used only in special applications). 

 (Optional) parameter @Region specifies the distribution region. It will be compared with the value 

which is given under key distribution_region in the registry file of given OFML package. If 

no @Region parameter is given, the entry matches each distribution region. 

 Parameter @InfoType specifies a concrete option influencing the appearance of the order. The 

supported options and their corresponding possible values are described below. The specification 

for @InfoType is required.  If there are multiple table entries for a given @InfoType with 

different values for @OrderMode, @OrderDepth and @Region, the table entry will be used, 

which has the “best match” for the corresponding parameters of ongoing order listing generation 

resp. for current distribution region of registered OFML package. If there are multiple equally 

matching table entries, the first in the table will be used. 

• The supported options for parameter @InfoType and their corresponding possible values are: 

 @NeedSumOrder:  the integer value (0 – no, 1- yes) specifies whether identical articles (equal 

configuration) have to be summarized, using a single (shared) position in the order listing.  

Default behaviour (if no value is given for this option) is 0, i.e. no summarizing will be performed. 

Note: this option has an affect only if the application generally allows summarizing of identical 

articles during order listing generation. 

 @DeepSumOrder:  the integer value (0 – no, 1- yes) specifies whether sub-articles should be taken 

into account when summarizing identical articles (see option @NeedSumOrder above): In the case 

of 0 (standard), two equal articles are not considered to be identical if at least one of them has sub-

articles. 

Note: If specified, parameter @OrderMode must be @Standard and parameter @OrderDepth 

must be 0. 

  



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    12/47 

 @ArtSpecMode: specifies which article specification (number) has to be printed in the order 

listing. The value is a Vector [mode, max_length], where mode may be: 

0 – base article number (default) 

1 – final article number 

The element max_length specifies the maximum number of characters to be used for printing 

the article number, where NULL (default) denotes no restriction. 

 @ArtTextMode: specifies which form of the article text has to be used in the order listing. The 

possible integer values are: 

0 – short text 

1 – long text (default) 

2 – both 

 @NeedsAddPrices: the integer value (0, 1) specifies whether a detailed pricing information (e.g. 

including extra charges) has to be printed (1, default) or whether only the total price has to be 

printed for an order listing position (0). 

Whether the individual price components (with value of 1) are actually displayed depends on the 

respective application! 

 @MaxOrderDepth: the integer value specifies the allowed maximum depth of generated order 

structure, i.e. this option may be used to overrule the general maximum depth used for ongoing 

order listing generation. 

Value 0 (default) denotes no restriction for order structure depth. 

Examples: 
 
@OrderInfo;[[@InfoType,@ArtSpecMode]];[1,NULL] 

specifies, that final article number has to be printed (instead of base article number) without length 

restriction, regardless of order mode and depth of ongoing order listing generation. 

 
@OrderInfo;[[@InfoType,@NeedsAddPrices],[@Region,"ANY"]];1  

@OrderInfo;[[@InfoType,@NeedsAddPrices]];0 

Specifies, that separate price components have to be listed in distribution region ANY, but not in all 

other regions. Note: the order of both table entries is significant, because the second entry also 

matches region ANY (and would be used in case of reversed order of entries). 

 
@OrderInfo;[[@InfoType,@NeedsAddPrices],[@Region,"ANY"]];0 

Specifies, that separate price components must not be listed in distribution region ANY. In all other 

regions they will be listed (default behavior, see above). 

@OrderRemoveType, @OrderRemoveArticle, @OrderRemoveCategory, 

@OrderSumArticlesByType, @OrderSumArticlesByArticle, 

@OrderSumArticlesByCategory 

• Entries of these types specify which articles have to be removed from order structure resp. for which 

articles summarizing of equal configurations has to be performed. 

• Used by method xOiProgInfo::prepareOrder(). 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    13/47 

• Note: the information types regarding summarizing of identical articles have an effect only if the 

application generally allows summarizing of identical articles during order listing generation. 

• Further note: if option @NeedSumOrder in entry of information type @OrderInfo (see above) has 

value 1, the order generation algorithm after the calls of xOiProgInfo::prepareOrder() also will 

summarize identical articles in a general way not applying any restrictions. Therefore, if using the 

information types @OrderSumArticles*, you probably should make sure, that option 

@NeedSumOrder in entry of type @OrderInfo has value 0. 

• Articles may be specified by the OFML types used to represent them, by base article specification or by 

category. 

• An article specification may be incomplete in which case all article whose specification start with given 

string will be affected. 

• The value field of each of these information types may contain a comma-separated list of full type 

names, base article specification roots or category symbols, respectively. 

• There may be given more than entry for each type. 

• Whether a given entry will be used may be controlled by the conditions given in argument field (2. field). 

If argument field is empty, the entry will be used without checks. If it contains conditions, they all have 

to be evaluated as True in order to make entry effective. 

• Each condition is given as vector [condition_type,condition_value]. Multiple conditions 

have to be separated by commas. 

• Currently, the following condition types are supported: 

      @OrderMode 

is True if given value is equal to mode of ongoing order listing generation (see parameter 

@OrderMode of information type @OrderInfo above) 

      @OrderDepth 

is True if given value is equal to allowed maximum hierarchy depth of ongoing order listing 

generation (see parameter @OrderDepth of information type @OrderInfo above) 

      @LevelGT 

is True if effected order item belongs to an order hierarchy level greater than the given value 

(highest level is 1). 

@OrderPackFolderLabel 

• Specifies the label for the order folder into which generated pack article items have to be inserted. For 

more detailed information see Application Note on generation of pack articles. 

• The pack article generation process scans the current planning hierarchy for items referencing planning 

elements of this program, which have to be grouped to form so called pack articles. 

• The pack article generation process itself is controlled by entries of type @OrderPackArticle (see 

below), but if there is no entry of type @OrderPackFolderLabel no pack article items will be 

generated at all (for this manufacturer). 

• All OFML programs of a certain manufacturer should use the same label, because there will be created 

only one pack folder item for each manufacturer. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    14/47 

• The value field may contain a text resource ID. 

• Used by method xOiProgInfo::prepareOrder(). 

@OrderPackArticle 

• Entries of this type control the pack article generation process (see also entry type 

@OrderPackFolderLabel above). 

• The value field contains a Vector specifying the base article number of each pack article corresponding 

to a respective count (pack size) of planning elements forming the pack article. Thereby, first article 

number specifies the pack article containing one planning element, the second article number specifies 

the pack article containing two planning elements and so on. 

If there is no pack article for a given count of planning elements the according article number in the 

Vector is an empty String whereby the last article number in the Vector must not be empty. 

Thus, pack generation schemes may be specified involving non serial pack sizes, e.g. 3 and 7. 

• The argument field specifies the OFML class, article parameters and/or ODB type for planning elements 

subject to pack generation. There are given in the common form for conditions as described above for 

entry types @OrderRemove*. The according condition types and value types are: 

@Class 

is True if name of class of current planning element returned method getClass() is equal to class 

name (String) given as value. 

@ArticleParams 

is True, if article parameter code returned by method getArticleParams() of current planning 

element (article) is equal to article parameter code (String) given as value. 

@ODBType 

is True, if ODB type (if any) of current planning element is equal to ODB type name (String) given 

as value. 

The class specification is required, the other specifications are optional. 

Additionally the same conditions as for removing items may be specified (see @OrderRemove* types 

above), if necessary. 

• Used by method xOiProgInfo::prepareOrder(). 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    15/47 

3.  Table  plelement 

This table is used to control the behaviour of instances representing articles. It is introduced by OFML base type 

OiPlElement and is used also by derived classes OiOdbPlElement, xOiPlElement and xOiBTGPlElement3. Some 

entry types are used only by derived classes. Thus, not all of the entry types described below may be useful in a 

given OFML program (series), depending on the OFML types mapped to the articles of the series (see OAM). 

@Article4PropTitle 

• Specifies usage of article specification for property editor title. 

• Used by method OiPlElement::getPropTitle(). 

• Value field has to be of following format: [spec_type,max_length], where spec_type may be 

one of 

@Base for using the base article number, or 

@Final for using the final article number 

and max_length is an Integer, specifying the maximum length of article number allowed (0 specifying 

no restriction). 

Default: [@Base,0] 

@ArtText4PropTitle 

• Specifies usage of article text for property editor title. 

• Used by method OiPlElement::getPropTitle(). 

• Value field can contain the following value: 

@s for using the short description 

@l for using the long article text. 

Default: @s 

The property editor title string will be constructed from determined article specification 

(@Article4PropTitle) and article text (@Article4PropTitle) separated by a space character. 

@NoAddAsSibling 

• Standard implementation of base type OiOdbPlElement allows to add a new planning element next to a 

selected child object of an OiOdbPlElement, e.g. next to an accessory placed on top of a table. However, 

in some planning situations this behaviour may not be appropriate. Then, entries of type 

@NoAddAsSibling may be used to specify the situations when adding an element as a sibling (next) 

to a selected child object of an OiOdbPlElement is not allowed. 

• A planning situation is described by a set of conditions in the argument field. (The value in field 3 always 

has to be integer value 1.) 

A condition has to be given as a vector [condition_type, condition_value] and the 

conditions have to be separated by commas. An entry matches if all conditions specified in the argument 

field are satisfied. If no conditions are specified (empty argument field) the entry matches in any case. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    16/47 

• The following terms are used in the subsequent description of  possible condition types: 

- element:  the element to be added to the planning 

- implicit instance: the object (instance of type OiOdbPlElement) which becomes the father 

object of new element 

- reference object: the selected child object of implicit instance (next to which the new element 

will be added) 

• Currently, the following condition types are supported: 

@ElType 

is True, if the type of new element is one of the types specified as condition value (Vector of 

Strings) or if it is a sub type of them. 

Types have to be fully qualified (i.e. including the according OFML package specifier). 

@SelfType 

is True, if the type of implicit instance is one of the types specified as condition value (Vector of 

Strings) or derived from them. 

Types have to be fully qualified. 

@SelfCategory 

is True, if implicit instance belongs to one of the categories specified as condition value (Vector 

of Symbols). 

@SelfArticle 

is True, if the class of implicit instance implements interface Article and if its base article number 

starts with one of the strings specified as condition value (Vector of Strings). 

@RefType 

is True, if the type of reference object is one of the types specified as condition value (Vector of 

Strings) or derived from them. 

Types have to be fully qualified. 

@RefCategory 

is True, if the reference object belongs to one of the categories specified as condition value 

(Vector of Symbols). 

@RefArticle 

is True, if class of reference object implements interface Article and if its base article number 

starts with one of the strings specified as condition value (Vector of Strings). 

• Used by method OiOdbPlElement::doNotAddAsSibling(). 

@ShowAddAttPts: 

• Controls, whether additional (non-standard) attach points will be shown or not. 

• Used in PICK rule of xOiPlElement. 

• Additional attach points will be shown, if there is no control data table plelement, or if it does not 

contain an entry of this information type or if first matching entry contains integer 1 in its value field. 

• An entry of this type matches, if all conditions specified in the argument field are satisfied. A condition 

has to be given as a vector [condition_type,condition_value]. Conditions have to be 

separated by commas. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    17/47 

• Currently, the following condition types are supported: 

@CountGT 

is True, if the count of currently defined additions attach points is greater than the given value 

(Integer) 

@Category 

is True, if the class of the article instance belongs to one of the categories specified in value 

(Vector of Symbols) 

@Article 

is True, if base article number of the article starts with one of the strings specified in value 

(Vector of Strings) 

An empty argument field is identical to condition [@CountGT,0]. 

@FixDimensions 

• Used during initialization of instances of xOiBTGPlElement3. 

• Value field contains integer value for member variable mXoiFixDimensions, specifying whether fields 

"width", "depth", "height" and "ins_angle" in btgmlist table are defined as Floats. If value is 0 

(false/no), they are defined as String fields and may contain symbolic names to be resolved by current 

value of according property. 

@UseVarKeys 

• Used during initialization of instances of xOiBTGPlElement3. 

• Value field contains integer value for member variable mXoiUseVarKeys, specifying whether so called 
varkeys defined in additional var table are used as variant code in XCF and in field "variant" of 

btgmlist table (1 for yes, 0 for no). 

@UseOAM 

• Used during initialization of instances of xOiBTGPlElement3. 

• Value field contains integer value for member variable mXoiUseOAM, specifying whether OAM (instead 
of tables bgtmlist and mat) is used in order to specify additional ODB parameters (1 for yes, 0 for 

no). 

@AppInteractorDefs 

• Used in standard implementation of method getAppInteractorDefs(). 

• For details of usage see Application Note AN-2013-001. 

 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    18/47 

4.  Table  anyarticle 

The entries in this table allow to control the creation and appearance of the dummy geometry of instances of 

base type xOiAnyArticle, used to represent articles without a given specific graphical representation. 

@GeoCreationMode 

specifies, whether a dummy geometry has to be created: 

 1 - always create dummy geometry 

 0 - create dummy geometry only if father is root object of hierarchy. 

Default: 1 

@GeoType 

specifies the OFML type of dummy geometry. 

Default: OiBlock 

@GeoArgs 

specifies the parameters for initialize() function of OFML type given in entry of type @GeoType. 

Default (if there is no @GeoType entry):  [1,1,1] 

@GeoMat 

specifies the material symbol for geometry (to be resolved via OiProgInfo::getMatName()). 

Default: white 

@CreateText 

specifies, whether a text has to be displayed beside actual geometry. 

Values: 0 (not), 1 (yes). 

Currently, the text contains the article short description of represented article. 

Default: 0. 

@TextPos 

specifies the (local) position for text primitive. 

Default: right bottom back corner of bounding box of actual geometry. 

@TextMat 

specifies the fully qualified material name for text primitive. 

Default: white 

@TextAlignment 

specifies the type of text alignment. 

Values according to Mtext::setAlignment() (see OFML Specification). 

Default: @LEFT 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    19/47 

5.  Table  epdfproductdb 

This table is used to control some aspects of the behaviour of the EPDF/OCD product database object registered 

for a given OFML series. The concrete type of the product database object is specified in DSR configuration file 

for given OFML series under key productdb and depends on the concrete data format used for the series, as 

well as – in case of OCD – on the implementation to be used (native vs. non-native). Some of the options only are 

usable with the native implementation (see subsection 5.3). 

If the table is not found in standard location (library path) it will be looked up in the path specified in DSR 

configuration file for given OFML series under key proginfodb_path. 

The name of the table is derived from the historically older proprietary product data format EPDF, which is/was 

the predecessor of OFML standard product data format OCD. 

5.1.  General options 

@SafePropertyNames 

Specifies, whether identifiers (names) of OCD characteristics in given OFML series comply with the OCD 

specification, where integer value 1 means Yes/True, and 0 means No/False. Default: 0. 

According to the OCD specification only alphanumeric characters including the underscore may be used 

for identifiers of OCD characteristics, where the first character must not be numeric. Furthermore, no 

reserved keywords may be used. (In OFML-based applications, to the keywords mentioned in the OCD 

specification, the reserved OFML keywords are added, see Appendix A.1.) 

When the OCD data is converted from an external ERP system, however, this requirement cannot be met 

under certain circumstances. Therefore, OFML applications (in mode 0) try to handle OCD characteristic 

identifiers that are not standard compliant in a robust manner. For that purpose, the following 

replacements are made during the conversion of an identifier of an OCD characteristic into the ID of the 

associated OFML property5: 

• If the identifier of the OCD characteristic is an OFML keyword, the character '_' is preceded. 

• If the identifier of the OCD characteristic starts with a numeric character, the letter 'S' (for "Symbol") 

is preceded. 

• Non-alphanumeric characters are replaced by a sequence "_XX", where XX is the hexadecimal 

representation of the character. 

• The character '_' is replaced by "__". 

During the determination of the associated OCD characteristic identifier for a given OFML property ID 

then the corresponding inverse modifications will be made. 

If the identifiers of OCD characteristics comply with the OCD specification, but value 1 is not specified 

for this option, the following problems may occur6: 

• If the identifier of an OCD characteristic starts with letter 'S' followed by a numeric character, a 

corresponding OFML property ID is used, e.g. @S2SNA, but backwards the (non-existent) OCD 

characteristic identifier "2SNA" will be determined (with the consequence that the property cannot 

be changed by the user). 

 
5Note: These modifications must be taken into account in ODB data, because there OFML property ID's have to be used. 
6what should be avoided by explicitly specifying value 1 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    20/47 

• If the identifier of an OCD characteristic contains underscores, these are replaced in the associated 

OFML property ID by "__" (e.g. "_2SNA" => @__2SNA). This must be taken into account in ODB 

data, i.e., there the OCD characteristic identifier may not be used one-to-one. 

@PreselectRestrictable 

Specifies the behaviour with respect to automatic value selection for restrictable properties. Without 

automatic value selection the (initial) state (value) of a restrictable property is “not specified” (“???”). 

1 

pre-select restrictable properties which have a value marked as default (and which is valid in 

current configuration) 

2 

pre-select all restrictable properties (use first valid value, if no default value is specified or if it is 

not valid in initial configuration) 

3 

no pre-selection 

Default behaviour is 1. 

Note: A restrictable property keeps its value after changes of other properties as long as the value 

remains valid in the current configuration and is not overwritten by product relationships. If the value 

becomes invalid, the new value of the property will be determined according to the method specified 

with this option. 

@ObligatoryPropCheck 

Specifies, whether unspecified obligatory properties have to be reported as an inconsistency, where 

integer value 1 means Yes/True, and 0 means No/False. Default: 0. 

Note: 

An inconsistent article cannot be ordered. Therefore, use value 1 only after careful consideration. An 

obligatory property may be unspecified, if all possible values currently are not valid due to preconditions. 

Normally, this has to be considered as a data error because an obligatory property should have at least 

one valid value in each possible configuration. Value 1 would prevent the user from ordering the article, 

and the manufacturer has to rely on an error report by side of the user in order to get informed about 

the error. 

Value 1 might be useful only in some complex data constellations where it is hard to assure a valid value 

in all possible configurations. I.e., the data creator deliberately accepts such inconsistent intermediate 

configuration states. However, the user still might not know, that this an intermediate state, and how to 

get out of this state. Therefore, with OCD 4.0 the data creator should consider the application of user 

messages in order to inform the user about the situation. 

@MultiplyPricingFactors 

Specifies, whether multiple pricing factors assigned for a given variant condition within a single pricing 

condition have to be multiplied. There, integer value 1 means Yes/True, and 0 means No/False. In case 

of 0 only the last assigned pricing factor will be used. Default: 1. 
  



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    21/47 

Note: 

This option is relevant only for OCD versions 2.0, 2.1 and 3.0. In format versions 2.2 and 4.0 the 

prescribed behaviour corresponds to value 0, because the assignment of multiple pricing factors for a 

given variant condition probably is not really intended by the data creator, and because, on the other 

hand, the desired/required end factor could be set with a single assignment as well. 

(The default for OCD versions 2.0, 2.1 and 3.0 is 1 for historical reasons and due to backward 

compatibility.) 

@InsignificantPropClasses 

Specifies, whether OCD property classes are used to qualify OCD properties. There, integer value 1 

means No, and 0 means Yes. Default: Yes. 

Value 1 should be assigned, if OCD data will be exported from an ERP system, which does not employ 

the concept of property classes, and where the export routine generates the OCD property classes in a 

random way. If value 1 is not assigned in these cases, saved projects may not be updated after 

installation of newly exported OCD data, even if there were no significant changes in the original ERP 

system. 

@GenerateLimits4NumProps 

Specifies, whether min/max limits have to be generated for numeric properties, if no limit was set via 

interval values. There, integer value 1 means Yes/True, and 0 means No/False. Default: False. 

The limits will be generated based on the count of digits specified for the affected property. For instance, 

if the specified count of digits for an integer property is 3, the corresponding limits are -99 (min) and 

999 (max). Thus, this option (value 1) may be used in order to avoid the input of invalid values by the 

user. 

@CompleteEAN 

Specifies, whether end (final) article number contains all information in order to recreate the current 

configuration, where integer value 1 means Yes/True, and 0 means No/False. Default: 0. 

This option is relevant only for user-defined OCD coding schemes7. If value is 1, the end (final) article 

number will be used to describe and store the current configuration of the article, otherwise an extended 

variant code will be used/generated. Use value 1 only, if you are sure, that the end (final) article numbers 

of all articles in the series contain a representation for all configurable properties. 

5.2.  Coding schemes 

The following options are used to specify the coding scheme for end (final) article number (including the variant 

code). However, in case of OCD product data these options will not be used if a code scheme is specified for a 

given article in the according OCD table itself. (It is recommended to use the OCD coding scheme table instead of 

this control data table in order to specify a coding scheme.) 

 
7 Also for user-defined coding schemes, this option can be considered obsolete now, since starting with the releases of the 
pCon applications in March 2010, the manufacturer-independent, so-called OFML-VarCode is used to store and restore the 
configuration of an article. For projects that have been saved with older versions, or for projects where by special 
programming manufacturer-specific variant codes or final article numbers are stored and assigned, this option should 
however be further maintained. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    22/47 

Conceptually, the end (final) article number consists of the base article number, a separator string and the variant 

code describing the current configuration of the article. 

@VarCodeType 

Specifies the type of the variant code. The currently supported types are: 

@Complete 

The variant code contains property and value IDs for all currently defined properties. Each 

property is represented in the form prop_class.property=prop_value. The property 

representations are separated by semicolons. 

This is the default type. 
It corresponds to predefined OCD coding scheme KeyValueList. 

@ValuesOnly 

The variant code only contains the value IDs for all currently defined properties. The values may 

be separated by client defined separators (see @VarCodeValueSep below). 

This type corresponds to predefined OCD coding scheme ValueList. 

@VarCodeMode 

Modifies the behaviour with respect to a defined variant code type. 

For type @Complete currently there is no special mode defined. 

For type @ValuesOnly the mode specifies the range of properties to be represented in the variant 

code. The possible modes are: 

0  -  only currently defined properties (default) 

1  -  all configurable properties 

@SpecSeparator 

Specifies the String to be used to separate base article number and variant code in the end (final) article 

number. 

Default: a single space. 

@VarCodeValueSep 

Specifies the String to be used to separate property values in variant codes of type @ValuesOnly. 

Default: a single space. 

@VoidValVarCodeChar 

Specifies the character to be used to represent unspecified optional properties in variant codes of type 

@ValuesOnly. 

In the variant code there will be placed as much instances of this character as the specified number of 

digits for value representation. 

Default: 'X'. 
 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    23/47 

@InvalidVarCodeChar 

For variant codes of type @ValuesOnly in mode 1 (see @VarCodeMode) specifies the character to 

be used to represent currently invalid configurable properties. 

In the variant code there will be placed as much instances of this character as the specified number of 

digits for value representation. 

Default: '-'. 

@FixVarCodeValLen 

For variant codes of type @ValuesOnly specifies whether value codes for each property have a fix 

length according to the count of digits specified for each property. There, integer value 1 means Yes/True, 

and 0 means No/False. 

In the case of 0, padding space characters are stripped. 

Default: 0, if value separator (see @VarCodeValueSep) is not an empty string, otherwise 1. 

5.3.  Specific options of native OCD implementation 

@AllowConsecValsInTrimmedCode 

This option refers to the processing of final article numbers (in order to re-create an encoded article 

variant) which are encoded according to a user-defined scheme where the trim flag is set (i.e., spaces at 

the end of a property value are removed). Such end article numbers cannot be processed with the 

standard method if two properties immediately follow each other in the final article number (i.e., are 

not separated by separator characters). With this option, an extended method can be enabled, which – 

at the expense of the performance – makes it possible to process even such end article numbers with 

consecutive properties. 

0 (or false) 

The extended procedure should not be used. 

This is the default behavior (if there is no table entry for this option). 

1 (or true) 

The extended procedure is to be used. 

@DeactivateValuePreconds 

With this option, the evaluation of value preconditions generally can be prevented. 

The value of the option (3rd field) is treated and evaluated like an OCD condition (logical expression)8.  

Among other things, it is therefore possible to reference properties. 

Example:  @DeactivateValuePreconds;;SPECIAL = '1' 

The result of the expression must be definitely true so that the deactivation of the preconditions 

becomes effective9. 

 
8The condition is evaluated before the evaluation of the relationship knowledge of the processed article. 
9For more on undefined logical expressions see OCD specification. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    24/47 

The option aims at a very concrete scenario: Given is an article with many properties, which in turn have 

very large sets of values. By setting a special property (in the example above SPECIAL), the article should 

be ordered in a special version, for which all values must/should be selectable (valid).  For   this,   all   

value   preconditions   would   have   to   be   supplemented   by   the   sub-condition  SPECIAL <> '1'.  

Due to the immense amount of values, this is not only costly in terms of data creation, but would also 

lead to poor performance in the evaluation of the relationships at run-time.  This can be avoided by 

means of this option. 

@IgnoreUnknownPropInKeyValueVC 

This very special option is only needed in very rare cases, namely when, in the context of an online shop 

system, an article generated via the interface of the OnlineConfigurator is to be initialized by means of a 

variant code generated from the leading ERP system, and this variant code is built-up according to the 

OCD schema KeyValueList, but in which the characteristics are not qualified with a class.  In this case, the 

OCD implementation expects that a characteristic contained in the variant code is included in the 

(current) classes of the article in question. As soon as this does not apply to a characteristic, the 

processing of the variant code is aborted and there is no initialization of the article with the values coded 

in the variant code. 

This option now controls whether the default behavior described above should be used or whether 

missing characteristics should be ignored. The latter could be necessary, e.g., if the variant code is 

generated from an older order where characteristics were used that no longer exist in the current OCD 

data. 

0 (or false) 

An unqualified characteristic in the variant code that is not contained in the classes of the article 

causes the processing of the variant code to be aborted. 

This is the default behavior (if there is no table entry for this option). 

1 (or true) 

An unqualified characteristic in the variant code that is not contained in the classes of the article 

is ignored when processing the variant code. 

@NeedValuesForRGProps 

If the option is present and has the value 1, all values of properties with RG are passed to the OFML 

property generated for the OCD property10. This allows for a value change by calling the method 

setPropValue() (OFML interface Property).  Especially, this is interesting for OAP projects. 

@OCDUserMessageMode 

This option is used to control the behavior of the application with respect to messages to the users, 
which are output in the OCD data using the function USER_MESSAGE(). 

@MessageOnly 

The messages should always be output in a modal message dialog (which must be confirmed 
by the user). 

 
10 Otherwise, the value choice list contains only the current value of the OCD property, which makes the OFML property 
read-only. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    25/47 

@HintPreferred 

The messages should preferably be displayed in a non-modal information window (hint). The 
messages are to be output in a modal message dialog only if the application does not support 
hints. 

This is the default behavior (if there is no table entry for this option). 

@HintOnly 

The messages may only be displayed in a non-modal information window (hint), that is, if the 

application does not support hints, the messages are not output. 

@OptPropsWithBaseValues 

This option controls the behavior regarding properties declared as optional for which there are values 

specified in the article base table. The OCD specification does not contain clear regulations with respect 

to this situation. There are 2 possible interpretations, which can be chosen by the according value of this 

option: 

0 

Because the article base table defines the fixed resp. allowed values for selected properties of 

the article, the optional flag will be ignored, i.e. the property cannot be in the state “not 

specified” but must always have one of the specified values. 

This is the default behavior (if there is no table entry for this option). 

1 

For configurable properties the article base table serves only to restrict the set of values 

compared to those specified in the value table, i.e., a property declared as optional also can be 

in the state “not specified”. 

@RelEvalOptimization 

With this option, certain methods for optimizing the evaluation of relationship knowledge can be 

activated.  Currently, only one method is supported, which is activated with the value 2: 

2 

This optimization refers to the automatic value selection of restrictable properties (see option 

@PreselectRestrictable): The value set of a pre-selected property is "frozen", so it 

cannot be changed by the pre-selection of subsequent properties. Therefore, this optimization 

requires that pre-selected properties have no dependencies on properties that are further 

down in the feature list11. 

With this method, a noticeable performance gain results when many properties with large value 

sets are pre-selected and many of the values have preconditions12. If the value sets of the pre-

selected properties are restricted exclusively via constraints (which should be the normal case 

in the OCD data creation), the performance gain is low. 

 

 
11Such dependencies are poor from the user's point of view and should be avoided anyway in the data creation. 
12Actually, the performance gain results from the fact that significantly fewer preconditions have to be evaluated with this 

method. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    26/47 

@SetDefaultMode  (obsolete13) 

Specifies the behavior regarding Builtin-function 

$SET_DEFAULT($self,<property>,<term>) 

in SAP—language subsets14: 

@AssignValue 

The value of the expression is assigned to the property if the property currently has no value. 

So, the behavior is identical to that of an action of the form 

<property> = <term> if <property> not specified 

This is the default behavior (if the option is not given). 

@SetDefault 

The value of the expression is set as the default value for the property. 

So there is no direct value assignment to the property, however, for restrictable properties the 

default value can be effective in the context of a subsequent automatic value selection (see 

option @PreselectRestrictable). 

For optional properties this mode has no meaning. The behaviour for these properties is always 

as in mode @AssignValue. 

@SetVisibilityMode 

This option defines the scope for function SET_VISIBILITY(): 

@Standard 

Characteristics that are declared nonvisible by the function are not displayed both in the 
Property Editor and in the variant text. 

This is the default behaviour (if the option is not given). 

@PropEditOnly 

Characteristics that are declared nonvisible are not displayed only in the Property Editor (but 

are included in the variant text). 

@ShowExtraCharge4Value 

For properties with a value choice list this option may be used in order to display the extra charge which 

will be imposed if a given value from the list will be selected15. 

For that purpose, in the value field a scheme for relevant variant conditions has to be specified. This 

scheme consists of arbitrary characters and has to contain the placeholder %V, which will be substituted 

at run time by the identifier of the property value. Optionally, the scheme may contain the placeholder 

%P, which will be substituted at run time by the identifier of the property. During initialization of an 

article, for all possible values (of all properties) the price table will be looked up for entries of level X 

(extra charge) with a fixed price value for a variant condition which results from applying the given 

 
13This is no longer required/supported as of the releases in fall 2019. See also application note AN-2014-04. 
14Note: Officially, this Builtin-function is not supported by the OCD—Standard! 
15Currently, this option is supported only by the property editor of pCon.planner >= 7. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    27/47 

scheme to the property value. If there is such an entry, the extra charge from this entry will be appended 

to the value description in the choice list. 

Example: 

@ShowExtraCharge4Value;;%P_%V 

Let's assume, an article possesses a property FOO with a value BAR and in the price table exists an entry 

of level X with a fixed price value for variant condition FOO_BAR, then the extra charge from this entry 

will be appended to the description of value BAR in the choice list. 

@ShowPrecondInvalidValues 

This option is related to restrictable properties: 

If there is an entry for this option and its value is 1, then property values currently invalid due to 

preconditions will be displayed in the value choice list as inactive (greyed out). 

Normally (no entry for this option or in case of value 0), currently invalid property values will not be 

presented in the value choice list. 

Note: This option has no impact on property values which became invalid due to constraints. These 

values in any case will not be presented in the value choice list. 

@UnlockBackwardRestriction 

Occasionally, OCD relationship knowledge includes so-called backward dependencies. These lead to the 

fact that the value set of a property is influenced by the value of another property which is further down 

in the property list. In extreme cases, it can happen that the dependent property has only one valid value 

after the property further down in the list has been changed and, therefore, can no longer be changed. 

A (typical) example of a backward dependency is the following Constraint: 

Objects: 

    T is_a MAT_PROPS. 

Restriction: 

    Table STEEL_COLOR_59 ( 

        STEEL_COLOR_59 = T.STEEL_COLOR_PGR, 

        STEEL_COLOR    = T.STEEL_COLOR). 

Inferences: 

    T.STEEL_COLOR_PGR, T.STEEL_COLOR. 

Since both the price group property STEEL_COLOR_PGR and the associated finish property STEEL_COLOR 

are listed under Inferences, both properties restrict each other. If the user changes the property 

STEEL_COLOR, which is further down in the list of properties, property STEEL_COLOR_PGR may be 

blocked as described above. 

From the user's point of view, such backward dependencies should be avoided in principle. 

In the example above, ideally only the finish property should be dependent on the price group property. 

If this is not possible16 and if the properties that imply a backward dependency are restrictable 

properties, this option (value 1) can be used to enable an exception handling in the OCD 

implementation: 

A temporary reset of the current value of the changed property and an additional evaluation cycle of the 

relationship knowledge unlocks properties higher up in the list. 

Implications of this exception handling are: 

 
16 e.g. due to peculiarities of the ERP system from which the OCD data is exported 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    28/47 

1. Any existing relationships of the type Reaction for the changed restrictable property may 

become ineffective under certain circumstances!! 

2. In extreme cases, the value just set can become invalid (and a different value can be assigned 

to the property). 

3. Slightly poorer performance due to the additional evaluation of relationship knowledge. 

The possible problems as a result of implications 1 and 2 require extensive testing by the manufacturer 

(data creator) when using this option! 

Note: 

The additional evaluation cycle has no effect if the relevant properties depend on another, restrictable 

property by a precondition and only become valid/visible when this property is pre-selected17! 

@UnfixPreselectedChoiceList 

When automatically pre-assigning values to a restrictable property (see option 
@PreselectRestrictable), by default the set of values of the property shown to the user is 

"frozen", i.e., corresponds to the set of valid values defined at that time (thus cannot be changed due to 
the pre-assignment of subsequent characteristics). 

However, the underlying assumption that the properties are or can be arranged in the property list 
according to a logical order from top to bottom is not always fulfilled, see example below. In that case, 
this option can be used with the value 1. The set of values visible to the user then corresponds to the 

set of valid values defined after the pre-assignment of all restrictable characteristics. 

Note: If the option @RelEvalOptimization has the value 2, this option has no effect. 

An application example for this option would be a media cabinet with a built-in TV. Depending on the selected 
model, a certain number of HDMI and USB ports are available for additional devices. Each added device consumes 
a certain number of ports. If all ports are occupied, no further additional device can be installed. The add-on devices 
are configured/inserted via corresponding properties, but there is no defined priority order for the different types 
of devices. 

 
17 see option @PreselectRestrictable in section 5.1 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    29/47 

6.  Tables for Planning Groups 

Tables jointplgroup, layoutgroup, tabularplgroup and customplgroup can be used to control 

some aspects of the behavior of planning group instances whose type is xOiJointPlGroup, xOiLayoutGroup, 

xOiTabularPlGroup resp. xOiCustomPlGroup18. 

If the tables are not found in standard location (library path) they will be looked up in the path specified in DSR 

configuration file for given OFML series under key proginfodb_path. 

If argument field (2) is empty the value specified in field 3 for a given info type (field 1) is valid for any instance of 

this class. If argument field is not empty it has to contain a condition in the form of a vector 

[condition_type, condition_value]. 

If multiple conditions are specified, they have to be separated by a comma. 

Currently, the following condition types are supported: 

       @Article 

is true, if the instance represents an article and if its base article number starts with one of the strings 

specified in the condition value. 

The strings in the condition value must be separated by a comma and enclosed in square brackets. 

        @ArticleX 

is true, if the instance represents an article and if its base article number is exactly the same as one of 

strings specified in the condition value. 

The strings in the condition value must be separated by a comma and enclosed in square brackets. 

This condition type should/can be used instead of @Article if there are several planning group articles 

with a common article number root, in order to avoid dependency on the order of the table entries. 

        @ArticleNOT 

is true, if the instance represents an article and if its base article number does not start with any of the 

strings specified in the condition value. 
The strings in the condition value must be separated by a comma and enclosed in square brackets. 

        @Property 

is true, if the key of a processed common property starts with one of the strings specified in the condition 

value. 

The strings in the condition value must be separated by a comma and enclosed in square brackets. 

        @PropertyNOT 

is true, if the key of a processed common property does not start with any of the strings specified in the 

condition value. 

The strings in the condition value must be separated by a comma and enclosed in square brackets. 

There may be only one article-related condition19. 

  

 
18or is derived from these types 
19 If more article conditions are specified, all except of the first will be ignored. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    30/47 

Property-related conditions currently are supported for the following options20: 

• @CommonPropsChLMode 

• @SortUnionCommonProps 

• @NonVisibleProps4Common 

• @ROPropsEditable4Common 

• @Classes4CommonProps 

• @ArticleFeatures4Common 

If the group instance does not represent an article, table entries with non-empty argument fields will be ignored 

and first entry with an empty argument field for a given info type rules. (I.e., neither article-related nor property-

related conditions may be applied for group instances not representing an article.) 

If the group instance represents an article, the processing of the table entries with respect to a requested option 

depends on whether the option supports property-related conditions (see above): 

• If the option does not support property-related conditions, the first entry with a matching article-related 

condition will be used. If there is no entry with a matching article related condition, the first entry with 

an empty argument field rules (if any). 

• If the option supports property-related conditions, all entries with property related conditions and a 

matching article condition are considered first. For a given common property, then the first of these 

entries is used whose property conditions are satisfied. If there is no such an entry, the first entry with 

an empty argument field rules (if any). 

6.1.  Common options 

@InsertMode 

The insert mode controls the behavior regarding insertion of new elements between two existing layout 

elements21 and dimension change of elements. 

This option is not relevant for class xOiTabularPlGroup (table tabularplgroup)! 

The following modes are defined: 

0 Insertion between two layout existing elements and dimension change of elements is not 
allowed. 
This is the default mode. 

1 Dimension change of elements is allowed. 

2 Both insertion and dimension change are allowed. 

Note: 
The algorithms for handling modes 1 and 2 are based on the detection of collisions between the 
elements of the planning group.  Therefore, for a correct functioning, the elements of the planning group 
must not be excluded from collision detection using method disableCD() (OFML interface Base)! 

  

 
20 Any property condition specified for other options will be ignored. 
21For class xOiJointPlGroup this refers to elements contained in the topological order list. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    31/47 

@SelectableState4Layout 

Specifies, whether layout elements22 are selectable by the user, where integer value 1 means Yes/True, 

and 0 means No/False. Default: 1. 

Initial state according to OFML interface Base is 1, occasionally, however, it is desirable (necessary) that 

the layout elements are not selectable, e.g. if the elements should (may) only be changed via methods 

of the planning group. 

@SelectableState4Other 

Specifies, whether non-layout elements23 are selectable by the user, where integer value 1 means 

Yes/True, and 0 means No/False. Default: 1. 

Initial state according to OFML interface Base is 1, but non-layout elements (such as frames) typically 

should not be selectable. 

@CutableState4Layout 

Specifies the state according to method setCutable() (OFML interface Base) to be assigned to layout 

elements24. 

If there is no matching table entry for this option, elements get the initial (default) state 1, i.e. they can 

be deleted from the group by using the Cut or Delete operation of the application. 

If the elements only are allowed to be deleted in the context of a specific interaction (for example, an 

OAP Delete action), then this option should be used to assign the status -1. 

@CutableState4Other 

Specifies the state according to method setCutable() (OFML interface Base) to be assigned to non-layout 

elements25. 

It's not necessary to specify this option if option @SelectableState4Other (see above) has value 

0. 

See also the notes above for option @CutableState4Layout. 

@ShowAsArticle 

Specifies, whether the group instance – if it represents an article – has to be displayed in the basket as 

an article (1) rather than a group/folder (0). 

Default: 0 

@IsPseudoArticle 

Specifies whether the group instance represents a pseudo article, i.e. belongs to category 

@PseudoArticle26 (1) or not (0). 

  

 
22For class xOiJointPlGroup this refers to elements contained in the topological order list. 
23For class xOiJointPlGroup this refers to elements not contained in the topological order list. 
24For class xOiJointPlGroup this refers to elements contained in the topological order list. 
25For class xOiJointPlGroup this refers to elements not contained in the topological order list. 
26 see specification of OFML interface Article 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    32/47 

Default is 1 if the group instance represents an article and option @ShowAsArticle (see above) has 

the (default) value 0. Otherwise, the default is 0. 

@IsNonOrderArticle 

Specifies whether the group instance belongs to category @NonOrderArticle27 (1) or not (0). 

Default: 0 

Note: Category @NonOrderArticle presupposes category @PseudoArticle! 

@CommonProps 

Specifies the common properties to be pulled from the element level to the planning group level. 

The value is a listing of the keys of the relevant properties (OFML symbols) separated by a comma and 

enclosed in square brackets28. 

Option @AllObjs4CommonProps (see below) specifies whether the attributes of the properties 

(type, value set etc.) will be taken from all layout elements or only from the first layout element. The 

latter is the default behavior, which assumes, that all layout elements29 possess the same attributes with 

respect to these properties. 

Additionally, option @NonLayout4CommonProps (see below) can be used to specify that non-layout 

elements also have to be considered for common properties. 

If various elements are considered and two elements have the same (common) property but with 

different attributes, the first element in the list "wins". But see option @CommonPropsChLMode, 

specifying the way the choice lists of common properties are built. 

Only those properties will be added to the group instance which are actually defined for the relevant 

elements. In doing so, the order specified in @CommonProps is taken into account. However, if option 

@AllObjs4CommonProps has the value 1, the order may differ if the first layout element does not 

have all the properties specified in @CommonProps. (See also options @FirstPos4CommonProps 

and @CommonPropsPos below.) 

After a change of a common property the set of the common properties will be updated in order to react 

on possible dependencies. 

This option is available/active only if at least one initial sub article is specified in option @StartLayout 

(resp. @StartElement with xOiJointPlGroup) and if it was created successfully. 

Note: 

For a better performance, the common properties should also be specified in the table 

non_pd_properties (see appendix A.2), if the article of the planning group does not possess these 

properties (what probably is true in most of the cases). 

  

 
27 see specification of OFML interface Article 
28OFML-Vector representation 
29 For class xOiJointPlGroup this refers to elements contained in the topological order list. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    33/47 

@FirstPos4CommonProps 

Specifies the position in the property list to be used for first common property30. 

Default: 1 

Note: If further (fix) properties will be defined in derived classes, they should be positioned either after 

or before the common properties31. 

See also options @FirstPos4CommonProps and @CommonPropsPos below. 

@CommonPropsPos 

This option can be used to specify specific positions for common properties. 

The value field contains the OFML String Notation of a Vector whose elements are either of type Int or 

of type Void. 

The order in this option corresponds to the order of the properties specified in option @CommonProps 

(see above), i.e., first entry in @CommonPropsPos specifies the position for the first property in 

@CommonProps etc. 

If an entry in the Vector is an integer >= 0, the corresponding common property gets this position 

(according to the regulations specified for method setPropPos() of interface Property). Otherwise, if the 

entry has type Void, the position of the corresponding common property is determined based on option 

@FirstPos4CommonProps (see above) and the position of the property in option @CommonProps. 

If there are fewer entries in this option than in @CommonProps, the missing entries in 

@CommonPropsPos are treated as if they had a value of type Void. 

@AllObjs4CommonProps 

Specifies whether all layout elements have to be considered for common properties (1) or only the first 

layout element (0). 

Default: 0 

@NonLayout4CommonProps 

Specifies whether also non-layout elements have to be considered for common properties (1) or not (0). 

Default: 0 

Note: Value 1 has an effect only if option @AllObjs4CommonProps also has the value 1 ! 

@CommonPropsChLMode 

Specifies the way the choice lists of common properties are built. 

The following modes are supported: 

@FirstEl 

The first element possessing a given common property rules, i.e. the property definition is taken 
from that element (including a possible choice list). 

 
30 With instances of class xOiTabularPlGroup, the common properties actually get the positions starting with the value of this 
option plus 3 as the first 3 positions of the properties generated by this class are occupied by the Resize properties. 
31 Consider the regulations regarding property positions according to specification of method setPropPos() of interface 
Property. 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    34/47 

This is the default if option @AllObjs4CommonProps (see above) is not given or has the 

value 0. 

This mode offers a slightly better performance (than the other 2 modes), but should only be 
used if option @AllObjs4CommonProps does not have the value 1 and if all layout elements 

actually possess the same attributes with respect to the common properties. 

@Intersection 
If various elements have the same attributes with respect to a given common property but 

different choice lists, the choice list of the common property is formed by the intersection of 

the choice lists of the elements. 

If the resulting choice list is empty, the property will be ignored32! 

This is the default if option @AllObjs4CommonProps has the value 1. 

@Union 

If various elements have the same attributes with respect to a given common property but 
different choice lists, the choice list of the common property is formed by the union of the 
choice lists of the elements. 

Using the property-related condition types @Property and @PropertyNOT, different values can be set 
for this option for various common properties. 

@SortUnionCommonProps 

Specifies whether the values in a choice list of a common property built with mode @Union (see option 

@CommonPropsChLMode above) have to be sorted (1) or not (0). 

Default is 1 for numeric properties, 0 for symbolic properties (types Y and YS). 

@Classes4CommonProps 

Specifies whether the property class for a common property has to be taken from the property at 

element level (1) or not (0). 

Default: 0 (i.e., common properties get no class) 

@Meta4CommonProps 

Specifies whether properties of a (possibly) encapsulating instance (e.g. a Meta type instance) should be 

considered for common properties (1) or rather the properties of the actual article instance (0). 

Default: 0 

@CommonPropsDepth 

Specifies the levels of sub articles below the layout elements which have to be considered for common 

properties. 

Default is 0, i.e., only properties of the layout elements are considered. 

@NonVisibleProps4Common 

Specifies whether non-visible properties should be included in the set of common properties (1) or not 

(0). 

Default: 0 

 
32 i.e. will not be defined for the group instance 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    35/47 

If included, they will be editable by the user. 

Using the property-related condition types @Property and @PropertyNOT, different values can be set 
for this option for various common properties. 

@ROPropsEditable4Common 

Specifies whether properties which originally are read-only have to be editable if included in the set of 

common properties (1) or not (0). 

Default: 0 

Using the property-related condition types @Property and @PropertyNOT, different values can be set 
for this option for various common properties. 

@ArticleFeatures4Common 

Specifies whether a language dependent description for the common properties of the first layout 

element has to be included in the result of method getArticleFeatures()33 (1) or not (0). 

Default: 0 

Note: For this option to be effective, option @ShowAsArticle must have value 1. 

6.2.  Specific options for xOiJointPlGroup 

@_2DMode 

Specifies the mode for the 2D representation of non-empty planning group: 

@Elements 

Use (only) the 2D representation of the elements themselves (recommended). 

@Group 
Generate 2D representation for elements (ignoring own 2D representation of the elements). 

@Combined 

Use 2D representation of the elements and 2D representation generated by the group instance. 

This is the default (due to backward compatibility). 

@Rectangle 
Generate a simple bounding volume rectangle. 

@IgnorePlanDir4Remove 

Specifies whether first resp. last element of topological order can be removed independent of current 
planning direction of the application (1) or not (0). 

In the case of default value 0 the last element only can be removed if current planning direction is “to 

the right” (and analogical for the other direction). 

Note: Default planning direction is “to the right”. Not all applications allow the user to specify a different 
direction. 

  

 
33 OFML interface Article 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    36/47 

@AllElements4SubArticle 

Specifies whether all group elements (which represent an article) should be considered as sub articles 
of the group article. 

In the case of default value 0 only the elements from the topological order list will be considered as sub 

articles. 

If elements (such as back walls, cover plates and alike) which are not included in the topological order 
list also should be sub articles, value 1 has to be specified. 

@StartElement 

Specifies information to be used to create an initial sub article right after the planning group instance 

was created (and initialized with an article number). 

The value field contains the OFML String Notation of a Vector containing the following elements: 

1. OFML program (Symbol) 

2. Base article number (String) 

3. optional: Variant code type (Symbol: @VarCode, @OFMLVarCode, @Final) 

4. optional: Variant code (String) , may be incomplete 

5. optional: Property values (Vector of [key, value] pairs) 

6. optional: Property states (Vector of [key, state] pairs) 

Currently, the following state values can be specified34: 

0 – property is not visible 

1 – property is visible, but not editable 

3 – property is visible and editable 

 Examples: 

 @StartElement;;[@foo_bar,"ArtNr1"]   
 @StartElement;;[@foo_bar,"ArtNr2",@OFMLVarCode,"PROP1=814"] 

 @StartElement;;[@foo_bar,"ArtNr3",@VarCode,"",[[@Prop1,1],[@Prop2,@abc]]] 

@StartLayout 

Specifies information to be used to create initial sub articles (as layout elements) right after the planning 

group instance was created (and initialized with an article number). 

Note: Option @StartLayout takes precedence over (possibly simultaneously specified) option 

@StartElement! 

  

 
34 according to the specification of method setPropState2() of OFML interface Property 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    37/47 

The value field contains the OFML String Notation of a Vector of Vectors each containing the following 

elements: 

1. Attach point of predecessor to be used to position this element (Void/Symbol35) 

2. OFML program (Symbol) 

3. Base article number (String) 

4. optional: Variant code type (Symbol: @VarCode, @OFMLVarCode, @Final) 

5. optional: Variant code (String) , may be incomplete 

6. optional: Property values (Vector of [key, value] pairs) 

7. optional: Property states (Vector of [key, state] pairs) 

Currently, the following state values can be specified36: 

0 – property is not visible 

1 – property is visible, but not editable 

3 – property is visible and editable 

Example: 

 @StartLayout;;\ 

[[NULL,@foo_bar,"ArtNr1"],\   
  [@ATTPT_R1,@foo_bar,"ArtNr2",@OFMLVarCode,"PROP1=814"],\ 

  [NULL,@foo_bar,"ArtNr3",@VarCode,"",[[@Prop1,1],[@Prop2,@abc]]]] 

6.3.  Specific options for xOiLayoutGroup 

@ChildBranchGrowthMode 

Specifies whether child branches of the layout structure may grow only in one direction (@OneDir) or 

in both directions (@BothDirs). 

Default:  @OneDir 

@ContinueBranch4SingleForkEl 

Specifies whether the branch of a fork element has to be continued if a neighbor is added to it and the 
fork element is currently the single element in the branch. 

Due to backward compatibility, the default behavior is defined by the value 0 (no/false) since in principle 

a new branch is started when attaching a neighbor to a fork element. 

However, in the given scenario, the behavior defined by the value 1 (yes/true) is probably the desired 

behavior in most cases. 

@UseAllAttPts 

Specifies whether all attach points (including the standard ones) are used to connect layout elements 
(1) or only additional attach points (0). 

For better performance, use value 1 only if standard attach points actually are used to connect layout 

elements. 
Default:  0 

  

 
35 If an attach point is specified (Symbol) it will be used to position this article instance beside of the predecessor (if any), 
otherwise the position is determined via a standard procedure. 
36 according to the specification of method setPropState2() of OFML interface Property 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    38/47 

@StartLayout 

Specifies information to be used to create initial sub articles (as layout elements) right after the planning 

group instance was created (and initialized with an article number). 

The value field contains the OFML String Notation of a Vector of Vectors each containing the following 

elements: 

1. Attach point of predecessor to be used to position this element (Symbol37) 

2. OFML program (Symbol) 

3. Base article number (String) 

4. optional: Variant code type (Symbol: @VarCode, @OFMLVarCode, @Final) 

5. optional: Variant code (String) , may be incomplete 

6. optional: Property values (Vector of [key, value] pairs) 

7. optional: Property states (Vector of [key, state] pairs) 

Currently, the following state values can be specified38: 

0 – property is not visible 

1 – property is visible, but not editable 

3 – property is visible and editable 

Example: 

 @StartLayout;;\ 

[[NULL,@foo_bar,"ArtNr1"],\   
  [@ATTPT_R1,@foo_bar,"ArtNr2",@OFMLVarCode,"PROP1=814"],\ 

  [@ATTPT_R2,@foo_bar,"ArtNr3",@VarCode,"",[[@Prop1,1],[@Prop2,@abc]]]] 

6.4.  Specific options for xOiTabularPlGroup 

@MaxColumns 

Specifies the maximum allowed count of columns, where default value 0 denotes no restriction39. 

@MaxRows 

Specifies the maximum allowed count of rows, where default value 0 denotes no restriction 40. 

@UniformColumnWidth 

Specifies whether all columns have the same width (1) or not (0). 

Default: 1 

The uniform width can be specified in option @ColumnWidth. 

@ColumnWidth 

Specifies the uniform width of the columns (in meter), if option @UniformColumnWidth has value 

1. 

Default: 1.0 

  

 
37 NULL in case of the first start element 
38 according to the specification of method setPropState2() of OFML interface Property 
39 The value initially set by this option can be overwritten using method setMaxColumns(). 
40 The value initially set by this option can be overwritten using method setMaxRows(). 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    39/47 

@ColumnWidths 

Specifies the widths of the columns (in meter), if option @UniformColumnWidth has value 0. 

In the value field a vector of float values is specified, with the index of the vector element corresponding 

to the index of the relevant column. 

If a new column is inserted into the layout for whose index the Vector in the value field of this option 

does not contain an element, the value from the last Vector element is used for this column. 

Default: [1.0] 

@UniformRowSize 

@UniformRowDepth 

@UniformRowHeight 

Specifies whether all rows have the same depth resp. height (1) or not (0). 

Default: 1 

Option @UniformRowSize can be used with both orientations, option @UniformRowDepth may 

be used only with horizontal orientation and option @UniformRowHeight may be used only with 

vertical orientation. If two options are specified, option @UniformRowSize takes precedence. 

@RowSize 

@RowDepth 

@RowHeight 

Specifies the uniform depth resp. height of the rows (in meter), if options @UniformRowSize, 

@UniformRowDepth  resp. @UniformRowHeight have the value 1. 

Default: 1.0 

Option @RowSize can be used with both orientations, option @RowDepth may be used only with 

horizontal orientation and option @RowHeight may be used only with vertical orientation. If two 

options are specified, option @RowSize takes precedence. 

@RowSizes 

@RowDepths 

@RowHeights 

Specifies the depths resp. heights of the rows (in meter), if options @UniformRowSize, 

@UniformRowDepth  resp. @UniformRowHeight have the value 0. 

In the value field a vector of float values is specified, with the index of the vector element corresponding 

to the index of the relevant row. 

If a new row is inserted into the layout for whose index the Vector in the value field of this option does 

not contain an element, the value from the last Vector element is used for this row. 

Default: [1.0] 

Option @RowSizes can be used with both orientations, option @RowDepths may be used only with 

horizontal orientation and option @RowHeights may be used only with vertical orientation. If two 

options are specified, option @RowSizes takes precedence. 

  



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    40/47 

@AlignmentX 

Specifies the alignment of the elements within the fields along X axis. 

The possible values are:  @Left (default), @Right, @Centered 

@AlignmentY 

Specifies the alignment of the elements within the fields along Y axis. 

The possible values are:  @Bottom (default), @Up, @Centered 

In case of a group with a vertical orientation the alignment relates to the height of the fields, otherwise 

to the local bounding box of the field element. 

@AlignmentZ 

Specifies the alignment of the elements within the fields along Z axis. 

The possible values are:  @Back (default), @Front, @Centered 

In case of a group with a horizontal orientation the alignment relates to the depth of the fields, otherwise 

to the local bounding box of the field element. 

@DefaultArticle 

Specifies information to be used to create articles if no specific article information is specified/available. 

The value field contains the OFML String Notation of a Vector containing the following elements: 

1. OFML program (Symbol) 

2. Base article number (String) 

3. optional: Variant code type (Symbol: @VarCode, @OFMLVarCode, @Final) 

4. optional: Variant code (String) , may be incomplete 

5. optional: Property values (Vector of [key, value] pairs) 

6. optional: Property states (Vector of [key, state] pairs) 

Currently, the following state values can be specified41: 

0 – property is not visible 

1 – property is visible, but not editable 

3 – property is visible and editable 

 Examples see option @StartElement in section 6.2. 

@EmptyFieldsPlaceholder 

Specifies whether empty fields should be filled by transparent and selectable placeholder objects (1) or 

not (0). 

Default: 0 

If the option has value 1, options @FieldPlaceholderThickness, @FieldPlaceholderMat 

and @FieldPlaceholderArticle (see below) can be used to influence certain aspects of the 

placeholder objects. 

  

 
41 according to the specification of method setPropState2() of OFML interface Property 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    41/47 

@FieldPlaceholderThickness 

Specifies the height42 resp. depth43 of placeholder objects. 

Default: 0.1 

@FieldPlaceholderMat 

Specifies the material to be used for placeholder objects. 

In the value field, a fully qualified OFML material name is expected. 

Default is a material of type Glass. 

@FieldPlaceholderType 

Specifies the fully qualified OFML type (String)to be used for placeholder instances instead of default 

type xOiTabularPlGroupPlaceholder. 

The specified type must be an immediate subtype of xOiTabularPlGroupPlaceholder! 

@FieldPlaceholderArticle 

Specifies the article information for placeholder objects. 

The value field contains the OFML String Notation of a Vector containing the following elements: 

1. OFML program (Symbol) 

2. Base article number (String) 

3. commercial manufacturer ID (String) 

4. commercial series ID (String)  

Default: no article information, i.e., the placeholder objects don't represent an article (and, thus, do not 

appear in article listings). 

Note: 

The article information is not used to create an instance of the type mapped to the article in OAM data 

(if any) but will be assigned to the placeholders represented by instances of internal type 

xOiTabularPlGroupPlaceholder. 

@FieldsPlaceholder4SubArticle 

Specifies whether placeholders representing articles44 should be represented in the basket structure as 

sub articles (1) or not (0). 

Default: 1 

If the option has value 0, there is no need to specify the placeholder article number in overridden 

method getInvalidSubArticleSpecs() (see specification of base class xOiPlGroup in XOI documentation). 

  

 
42 with horizontal orientation of the planning group 
43 with vertical orientation of the planning group 
44 according to option @FieldPlaceholderArticle 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    42/47 

@StartLayout 

Specifies information to be used to create initial sub articles (as field elements) right after the planning 

group instance was created (and initialized with an article number). 

The value field contains the OFML String Notation of a Vector containing the following elements: 

1. Creation mode (Symbol): 

@Uniform 

Creates as many fields as specified in second element filling them with articles according to 

option @DefaultArticle. 

@Specific 

Creates individual field elements as specified in the second element.  

2.  

• With mode @Uniform, a two-digit vector of integer values defining the numbers of columns 

(1st element) resp. rows (2nd element) to be created. 

• With mode @Specific a Vector of Vectors each containing the following elements: 

1. Field address of the layout element: [column index (Int), row index (Int)]45 

2. Article information according to the specification of option @DefaultArticle 

6.5.  Specific options for xOiCustomPlGroup 

@StartLayout 

Specifies information to be used to create initial sub articles (as layout elements) right after the planning 

group instance was created (and initialized with an article number). 

The value field contains the OFML String Notation of a Vector of Vectors each containing the following 

elements: 

1. Attach point of predecessor to be used to position this element (Symbol46) 

2. OFML program (Symbol) 

3. Base article number (String) 

4. optional: Variant code type (Symbol: @VarCode, @OFMLVarCode, @Final) 

5. optional: Variant code (String) , may be incomplete 

6. optional: Property values (Vector of [key, value] pairs) 

7. optional: Property states (Vector of [key, state] pairs) 

Currently, the following state values can be specified47: 

0 – property is not visible 

1 – property is visible, but not editable 

3 – property is visible and editable 

Example: 

 @StartLayout;;\ 

[[NULL,@foo_bar,"ArtNr1"],\   
  [@ATTPT_R1,@foo_bar,"ArtNr2",@OFMLVarCode,"PROP1=814"],\ 

  [@ATTPT_R2,@foo_bar,"ArtNr3",@VarCode,"",[[@Prop1,1],[@Prop2,@abc]]]] 

 
45 indexes start with 0 
46 NULL in case of the first start element 
47 according to the specification of method setPropState2() of OFML interface Property 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    43/47 

@StoreNeighborship 

Specifies whether neighbor-relationships between layout elements have to be stored in an internal data 

structure (1) or not (0). 

Default: 1 

If neighbor-relationships based on OFML attach points are not relevant in a specific project, value 0 

should be specified in order to avoid overhead (saving memory and improving performance). 

 
 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    44/47 

Appendix 

A.1  OFML keywords 

The keywords below may not be used as identifiers for OCD properties48. 
Note: the reservation here only refers to the upper and lower case spelling used below, i.e., other spellings are 
allowed. 

abstract 

break 

case 

catch 

class 

continue 

default 

do 

else 

final 

finally 

for 

foreach 

func 

goto 

if 

import 

instanceof 

native 

ODB_NAME 

operator 

package 

private 

protected 

public 

return 

rule 

self 

static 

super 

switch 

throw 

transient 

try 

var 

while 

  

 
48See also OFML specification 2.0.3, section 3.2.4 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    45/47 

A.2  Table non_pd_properties 

In this table the properties of an article instance are specified, which are not associated with a property in product 
data (OCD), i.e. which are defined by programming in the OFML class of the article instance. This information is 
used by the global Product Data Manager to avoid calls to the product database in order to process a change of 
these properties (thus improving performance). 

The table has the following structure: 

• Field 1: fully qualified name of the class 

• Field 2: property keys (OFML symbols), comma-separated 

ISO-8859-1 (Latin-1) is used as the character set. 

There may be multiple entries for a given class, in which case the lists of property keys will be concatenated. 

The table has to be contained in database pdate.ebase of the according OFML series (i.e., together with the 

OCD data for the articles of the series). 

The table description for the EBase configuration file is: 

table  non_pd_properties_tbl non_pd_properties.csv variable_width 

fields 2 

field  1 class vstring delim ; trim hidx link 

field  2 pkey  vstring delim ; trim 

As mentioned in section 6.1, for a better performance, the properties specified in option @CommonProps in the 

control data table for a planning group should also be specified in table non_pd_properties (if the article of 

the planning group does not possess these properties). 

Example: 

jointplgroup.csv: 
@CommonProps;[@Article,["GroupXY"]];@Foo,@Bar 

oam_article2ofml.csv: 
GroupXY;::ofml::xoi::xOiJointPlGroup;; 

non_pd_properties.csv: 
::ofml::xoi::xOiJointPlGroup;@Foo,@Bar 

 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    46/47 

A.3  Document history 
 

2023-09-18: 

• New option @UnfixPreselectedChoiceList in table epdfproductdb (section 5.3) 

• Control data tables for planning groups now support the condition types @Property and 

@PropertyNOT also for options @Classes4CommonProps and @ArticleFeatures4Common 

(section 6) 

• New options @CommonPropsPos and @SortUnionCommonProps for all planning groups (section 

6.1) 

• More precise description of option @ArticleFeatures4Common in section 6.1 

• New option @FieldPlaceholderType as well as more precise descriptions of options 

@AlignmentY and @AlignmentZ in table tabularplgroup (section 6.4) 

• New section 6.5 for table customplgroup (class xOiCustomPlGroup) 

 
2022-09-30: 

• More precise description and correction regarding information type @NeedsAddPrices in option 

@OrderInfo in table proginfo (section 2.6) 

• Control data tables for planning groups now support the condition type @ArticleX as well as 

condition types @Property and @PropertyNOT for some options related to common group 

properties (section 6) 

• New options @IsPseudoArticle, @IsNonOrderArticle and @CommonPropsChLMode for 

planning groups as well as a more precise description regarding option @CommonProps in section 6.1 

• New option @ContinueBranch4SingleForkEl  in table layoutgroup (section 6.3) 

 
2021-12-22: 

• More precise description of option @PreselectRestrictable in table epdfproductdb 

(section 5.1) 
 
2021-10-11: 

• New option @UnlockBackwardRestriction in section 5.3 

• New options @SelectableState4Layout and @NonLayout4CommonProps in section 6.1 

• New option @FieldsPlaceholder4SubArticle in section 6.4 

 
2021-03-23: 

• New options @FirstPos4CommonProps , @AllObjs4CommonProps and 

@Classes4CommonProps in section 6.1 

• Revision of option @StartLayout  in table jointplgroup (section 6.2) 

• New appendix describing table non_pd_properties (avoiding reference to XOI documentation in 

section 6.1) 
 
2020-11-04: 

• New option @NeedPropGroupDescriptions  in table proginfo 

• Added remarks regarding options @InsertMode and @CommonProp in section 6.1 (Common 

options in the control data tables for planning groups) 

• New option @ArticleFeatures4Common  in section 6.1 

• New option @StartLayout  in table jointplgroup (section 6.2) 

• New section 6.4 describing the options in table tabularplgroup 

 
2019-11-29: 

• Explicit description of options for tables jointplgroup and layoutgroup (instead of just 

referring to XOI documentation) 
 



 

 

© 2023 EasternGraphics GmbH    Control Data Tables    47/47 

2019-10-24: 

• New options @DeactivateValuePreconds,  @NeedValuesForRGProps and 

@RelEvalOptimization  in table epdfproductdb 

• Option @SetDefaultMode (table epdfproductdb) is obsolete as of the releases in fall 2019 

 
2019-07-05: 

• New options @IgnoreUnknownPropInKeyValueVC  and @SetVisibiltyMode  in table 
epdfproductdb 

• More precise description of option @SafePropertyNames in table epdfproductdb incl. new 

appendix A.1 specifying the OFML keywords 

• New section regarding tables jointplgroup and layoutgroup 

 
2017-01-24: 

• Added description for Infotype @DeepSumOrder in option @OrderInfo in table proginfo 

• Added remark for option @AppInteractorDefs in table plelement 

• New options @OCDUserMessageMode and @AllowConsecValsInTrimmedCode in table 
epdfproductdb 

 
2014-07-28: 

• Adopted to new CI style 

• Some reorganization in section 2 

• New options @UseUnspecPropVal4OdbInfo and @UseVoidPropVal4OdbInfo in table 
proginfo 

• New option @OptPropsWithBaseValues in table epdfproductdb 

 
2013-10-25: 

• Placeholder %P in option @ShowExtraCharge4Value (table epdfproductdb)  now is optional 

• New options @SafePropertyNames and @SetDefaultMode in table epdfproductdb 

 
2012-05-23: 

• Additional remark about option @PricesOnRequest in table proginfo. 

• New parameter type @Region for option @OrderInfo in table proginfo (incl. examples). 

• New subsection for specific options of native OCD implementation (table epdfproductdb) 

 
2010-12-17: 

• Added option @InsignificantPropClasses in table epdfproductdb 

 

2010-09-14: 

• Document structure now is centered around the tables (instead around the OFML types) in order to be 
more data creator-friendly 

• Some stylistic changes and small fixes 

• Updated section regarding tables proginfo, plelement and epdfproductdb 

• Removed section for obsolete table eplproductdb 
 

2007-08-24: 

• Added a lot of stuff for class xOiProgInfo 
 
2007-01-08: 

• Added stuff and corrections 
 
2006-11-09: 

• Initial Release 


	1.  Introduction
	2.  Table  proginfo
	2.1.  General options
	2.2.  Property related options
	2.3.  2D layer name
	2.4.  Property value pictures
	2.5.  Common properties
	2.6.  Order generation (article lists)

	3.  Table  plelement
	4.  Table  anyarticle
	5.  Table  epdfproductdb
	5.1.  General options
	5.2.  Coding schemes
	5.3.  Specific options of native OCD implementation

	6.  Tables for Planning Groups
	6.1.  Common options
	6.2.  Specific options for xOiJointPlGroup
	6.3.  Specific options for xOiLayoutGroup
	6.4.  Specific options for xOiTabularPlGroup
	6.5.  Specific options for xOiCustomPlGroup

	Appendix
	A.1  OFML keywords
	A.2  Table non_pd_properties
	A.3  Document history


