
EAIWS 4.16

EAIWS 4.16

Manual

for EAIWS 4.16 and EAILS 1.1

2024-10-22

Table of Contents

1 Prerequisites... 15

1.1 Operating System... 15

1.2 Java Runtime Environment...15

1.3 Port Mapper... 15

2 Installation.. 16

3 Licensing... 17

3.1 Obtaining the Host Name and Host ID..17

3.2 Installation of License Files...17

3.3 License Features.. 17

3.3.1 Feature egr.eai.server..17

3.3.2 Feature egr.eai.server.session...18

3.3.3 Feature egr.eai.server.throughput..18

3.3.4 Feature egr.eai.dsr.ofml_catalog..19

3.3.5 Feature egr.eai.ws.project.ProjectStore...19

3.3.6 Further License Features...19

3.4 Running the License Server..21

3.4.1 Starting the License Server..21

3.4.2 Stopping the License Server..21

3.4.3 Restarting the License Server..21

4 Configuration.. 22

4.1 Server Start-Up File.. 22

4.1.1 Default Locale.. 22

4.1.2 Fixer Compatible web-service..22

4.1.3 Known Currencies..22

4.1.4 Operations per Minute...23

4.1.5 Maximum Number of Concurrent Sessions...24

4.1.6 Timeout for Sessions...24

4.1.7 Session Suspend...24

4.1.8 Allowed File Access...24

4.1.9 OFML Debug... 25

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 1 of 298

EAIWS 4.16

4.1.10 Rotation of Log files...25

4.1.11 HTTP Server Options...27

4.1.11.1 Port Number..27

4.1.11.2 HTTP Server..27

4.1.11.3 HTTP Request Executer..27

4.1.12 Automatic Generation of Article Images...28

4.1.13 3DS Geometry Export..28

4.1.14 OFML File Extensions..28

4.1.15 HTTP Server Root...28

4.1.16 Global File Cache..29

4.1.16.1 Maximum Cache Size...29

4.1.16.2 Use of Extended Attributes..30

4.1.16.3 Transfer Modes..30

4.1.17 Java System Properties...30

4.1.18 Version Number of License Feature...31

4.1.19 Color Space... 31

4.1.20 Stop-Word Filters...31

4.1.21 GZIP-compressed Geometries..31

4.1.22 Property References..32

4.1.23 OFML catalog cache database..32

4.1.24 OFML data cache backend..33

4.1.25 FAPI-shell Command Timeout...33

4.1.26 Default image options (server start-up file)..33

4.1.27 Support for response headers...33

4.1.28 Statistics Event Manager...35

4.1.28.1 Block Size and Queue Size...35

4.1.28.2 HTTP/HTTPS server...35

4.2 Session Start-Up File Options...37

4.2.1 Allowed File Access...38

4.2.2 Unit Format Settings..38

4.2.3 Rounding in Basket Service...39

4.2.4 Article Number Prefix for Conversion to User Article..39

4.2.5 Color Space... 39

4.2.6 Session Features...39

4.2.7 Path Substitution.. 39

4.2.8 Encoding.. 40

4.2.9 Property References..40

4.2.10 Session Startup Modification Time...41

4.2.11 Currencies... 41

4.2.12 Timeout for Sessions...42

4.2.13 Session Suspend...42

4.2.14 FAPI-shell Command Timeout...43

4.2.15 Default image options (session start-up file)..43

4.3 Command Line Options...43

4.3.1 JVM Options.. 44

4.3.1.1 Application Root Directory...44

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 2 of 298

EAIWS 4.16

4.3.2 Online Configurator Options..44

4.3.2.1 Server Start-Up File..44

4.3.2.2 Destination of Log Messages...44

4.4 Configuration files... 44

4.4.1 Media Types... 44

5 Web Service Interfaces..45

5.1 Web Service Definition Syntax..45

5.1.1 Types... 45

5.1.1.1 Primitive Types...45

5.1.1.1.1 Boolean Type...46

5.1.1.1.2 Integer Type...46

5.1.1.1.3 String Type..46

5.1.1.1.4 Decimal Type...46

5.1.1.2 Defined Types..46

5.1.1.2.1 Enumeration Type...46

5.1.1.2.2 Structure Type..46

5.1.1.2.3 Alias Type..47

5.1.1.3 Constructed Types..47

5.1.1.3.1 Nillable Type..47

5.1.1.3.2 Sequence Type...47

5.1.2 Type Definitions... 47

5.1.2.1 Enumeration Type Definitions..47

5.1.2.2 Structure Type Definitions..48

5.1.2.3 Alias Type Definitions..48

5.1.3 Declarations... 48

5.1.4 Operations... 48

5.1.5 Names... 48

Boolean Values..49

5.1.5.1 Integers...49

Boolean Values..49

5.1.5.2 Integers...49

Strings.. 49

5.2 Common Type Definitions...49

5.2.1 UUID.. 49

5.2.2 URL.. 49

5.3 Application-Specific Data...50

5.3.1 Setting Application Data...50

5.3.2 Getting Application Data..50

5.3.3 Location Paths... 51

5.3.3.1 Syntax of Location Paths...51

5.3.3.2 Evaluation of Location Paths..52

5.4 Session Service.. 52

5.4.1 Type Definitions... 52

5.4.1.1 SessionId..52

5.4.1.2 StringPair..53

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 3 of 298

EAIWS 4.16

5.4.1.3 ProjectData..53

5.4.1.4 ClientMessage...53

5.4.1.5 CustomerData..54

5.4.1.6 ProjectSettings...54

5.4.1.7 SendMessageStatus...54

5.4.1.8 SessionCacheFileType...55

5.4.1.9 ImportFileOptions...55

5.4.1.10 SaveSessionOptions..55

5.4.1.11 OperatingSystemInformation...56

5.4.1.12 RuntimeInformation..56

5.4.1.13 MemoryUsage...57

5.4.1.14 GarbageCollectorInformation...58

5.4.1.15 MemoryInformation...58

5.4.1.16 ApplicationInformation...59

5.4.1.17 SendMessageResult...59

5.4.1.18 ServerInformation...60

5.4.1.19 SystemInformation..60

5.4.1.20 GetItemPropertiesTextMode..60

5.4.1.21 GetSystemInformationOptions...61

5.4.1.22 LogConfig..61

5.4.1.23 LogFilter..62

5.4.1.24 LogFilterSpec..62

5.4.1.25 LogData..62

5.4.1.26 LogRecord...62

5.4.1.27 FaultInfo..63

5.4.1.28 CallSite... 63

5.4.1.29 ResolveURIsOptions..63

5.4.1.30 ServerResponse..64

5.4.1.31 LoadSessionOptions...64

5.4.2 Faults... 65

5.4.2.1 SessionServiceFault...65

5.4.3 Operations... 65

5.4.3.1 hasOpenSession..65

5.4.3.2 openSession..65

5.4.3.3 closeSession...65

5.4.3.4 keepAlive..66

5.4.3.5 newSessionContext..66

5.4.3.6 disposeSessionContext...67

5.4.3.7 getSessionContext...67

5.4.3.8 getAllSessionContexts..67

5.4.3.9 updateSessionContext..68

5.4.3.10 setLocale...68

5.4.3.11 getLocale..68

5.4.3.12 setSessionProperty..69

5.4.3.13 getSessionProperty..70

5.4.3.14 saveSession..70

5.4.3.15 loadSession...71

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 4 of 298

EAIWS 4.16

5.4.3.16 setProjectSettings..72

5.4.3.17 getProjectSettings..73

5.4.3.18 setProjectAppData..73

5.4.3.19 getProjectAppData...73

5.4.3.20 getUploadURL...74

5.4.3.21 importFile..74

5.4.3.22 resolveURIs...75

5.4.3.23 getSystemInformation...76

5.4.3.24 configureSessionLog..76

5.4.3.25 getSessionLog...76

5.4.3.26 SendMessage..76

5.4.3.27 loadEmptySession..77

5.5 Catalog Service... 77

5.5.1 Type Definitions... 78

5.5.1.1 ArticleCatalogItem..78

5.5.1.2 CatalogImage..78

5.5.1.3 CatalogItem...79

5.5.1.4 CatalogItemType..81

5.5.1.5 CatalogResource...82

5.5.1.6 CatalogText...83

5.5.1.7 DescriptorType...83

5.5.1.8 DisplayMode..83

5.5.1.9 DisplayText(Catalog)...84

5.5.1.10 GetPackageInfoOptions..84

5.5.1.11 ItemCategory...85

5.5.1.12 ItemDescriptor...85

5.5.1.13 LanguageTag...85

5.5.1.14 LookupOptions...86

5.5.1.15 MaskedCatalog..87

5.5.1.16 MetaPlanningCatalogItem...87

5.5.1.17 MethodCallCatalogItem...87

5.5.1.18 MethodCallType...88

5.5.1.19 PackageCategory...88

5.5.1.20 PackageDependency..88

5.5.1.21 PackageInfo..88

5.5.1.22 PackageType...89

5.5.1.23 ScoredCatalogItem...89

5.5.1.24 SearchFlag..89

5.5.1.25 SeriesType..90

5.5.1.26 BasicSearchParameterSet..90

5.5.1.27 SearchParameterSet..91

5.5.1.28 SearchArticleParameterSet...91

5.5.1.29 Index Construction..91

5.5.1.30 Query Syntax...93

5.5.1.31 Filter Expression Syntax..94

5.5.1.32 TopCatalogItems..96

5.5.1.33 VarCodeType...96

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 5 of 298

EAIWS 4.16

5.5.1.34 SearchResourceParameterSet...96

5.5.2 Faults... 97

5.5.2.1 CatalogServiceFault...97

5.5.3 Operations... 97

5.5.3.1 getPackageInfo..97

5.5.3.2 setLanguages..98

5.5.3.3 getLanguages..99

5.5.3.4 lookupArticle..99

5.5.3.5 searchArticle..99

5.5.3.6 getCatalogItem...100

5.5.3.7 listCatalogItems...101

5.5.3.8 searchCatalogItems..102

5.5.3.9 setPreferredIconSize..102

5.5.3.10 getPreferredIconSize..103

5.5.3.11 getDescriptorIds...103

5.5.3.12 getItemDescriptors...103

5.5.3.13 getCatalogPath..104

5.5.3.14 searchResource...104

5.6 Basket Service.. 104

5.6.1 Type Definitions... 104

5.6.1.1 AddStateCode...104

5.6.1.2 ArticleDescription...105

5.6.1.3 ArticleDescription...105

5.6.1.4 AttachmentMode..105

5.6.1.5 BItemId... 105

5.6.1.6 BasketConfig...106

5.6.1.7 BasketItemType...107

5.6.1.8 BasketItem..108

5.6.1.9 CSArithmeticOperationError...110

5.6.1.10 CSConformabilityError..110

5.6.1.11 CSCurrencyError..110

5.6.1.12 CSErrorCode...110

5.6.1.13 CSInvalidValueError..111

5.6.1.14 CSItemDataAccessError..111

5.6.1.15 CSLineNotFoundError...111

5.6.1.16 CSOperationKind..111

5.6.1.17 CSUndefinedOperationError..112

5.6.1.18 CSValidationError...112

5.6.1.19 CSValueKind..112

5.6.1.20 ItemProperties..116

5.6.1.21 FolderProperties...118

5.6.1.22 GetArticleDataOptions...118

5.6.1.23 GetArticleFeaturesOptions...119

5.6.1.24 GetMultiArticleFeaturesOptions..119

5.6.1.25 GetImagesOptions..119

5.6.1.26 GetManufacturerInfoOptions..120

5.6.1.27 ArticleProperties...120

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 6 of 298

EAIWS 4.16

5.6.1.28 PackagingInfo..124

5.6.1.29 PartCompositionFailure...125

5.6.1.30 TextItemProperties..125

5.6.1.31 Value..125

5.6.1.32 Quantity..126

5.6.1.33 ManufacturerInfo..126

5.6.1.34 Money...127

5.6.1.35 Percentage..127

5.6.1.36 PropertyClass..127

5.6.1.37 PropertyType...128

5.6.1.38 PropertyValue..128

5.6.1.39 Interval..130

5.6.1.40 Property..130

5.6.1.41 PriceComponent..132

5.6.1.42 ArticleData...132

5.6.1.43 ArticleFeature..135

5.6.1.44 ArticleFeatures...136

5.6.1.45 ChoiceList...136

5.6.1.46 InsertInfo...136

5.6.1.47 ImageInfo..138

5.6.1.48 ConfigDependentMediaInfo...138

5.6.1.49 ItemSelectionOptions..139

5.6.1.50 GetChoiceListOptions...139

5.6.1.51 GetAllItemsOptions...140

5.6.1.52 DeleteItemsOptions..141

5.6.1.53 MoveItemsDirection..141

5.6.1.54 MoveItemsResult...142

5.6.1.55 RelocateItemsOptions...143

5.6.1.56 RelocateItemsResult...143

5.6.1.57 OAPRotateObjectAction..144

5.6.1.58 OAPTranslateObjectAction..144

5.6.1.59 OBKVersionInfo...144

5.6.1.60 OperationMode..144

5.6.1.61 CopyOptions..144

5.6.1.62 PricingProcedure..145

5.6.1.63 PricingProcedureLine..145

5.6.1.64 PricingProcedureDescription..146

5.6.1.65 CalculationLine..146

5.6.1.66 CalculationSheet..147

5.6.1.67 ItemCalculationSheet..148

5.6.1.68 HalfWayRoundingMode..148

5.6.1.69 LineInsertMode..148

5.6.1.70 LineType...148

5.6.1.71 PrintControl...149

5.6.1.72 CalculationRule..150

5.6.1.73 ConditionType..150

5.6.1.74 ConditionClass...151

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 7 of 298

EAIWS 4.16

5.6.1.75 ConditionSign..151

5.6.1.76 ConditionEditMode...152

5.6.1.77 RoundingRule..152

5.6.1.78 TaxSchemeDescription...153

5.6.1.79 TaxScheme..153

5.6.1.80 OrderedTax..153

5.6.1.81 TaxCategory..154

5.6.1.82 TaxInfo..154

5.6.1.83 OFMLUpdateState..154

5.6.1.84 UpdateBasketArticleResult..155

5.6.1.85 UpdateBasketArticlesOptions...155

5.6.1.86 DisplayText(Basket)..156

5.6.1.87 ExchangeRate...156

5.6.1.88 Vector2...156

5.6.1.89 Vector3...156

5.6.1.90 Rotation..157

5.6.1.91 ComposableGeometryProperties..157

5.6.1.92 CondGroupSelectionOptions...158

5.6.1.93 ColumnType..159

5.6.1.94 BasketItemAttrId...160

5.6.1.95 ColumnId...163

5.6.1.96 BasketColumn...163

5.6.1.97 ItemField...164

5.6.1.98 GetItemFieldOptions...168

5.6.1.99 PasteOptions...168

5.6.1.100 PasteContainerOptions...169

5.6.1.101 ItemAppData..169

5.6.1.102 OAPAction...169

5.6.1.103 OAPActionChoiceAction..170

5.6.1.104 OAPArticleSpecMode...170

5.6.1.105 OAPPropChangeAction...171

5.6.1.106 OAPClientCapability...171

5.6.1.107 OAPMediaSource...172

5.6.1.108 OAPAttachAreasPlacement...172

5.6.1.109 ViewDisplayMode...172

5.6.1.110 MergeMode...173

5.6.1.111 SetArticleMode...174

5.6.1.112 PriceInfo..174

5.6.1.113 GetPriceCalculationSheetOptions..175

5.6.1.114 ArticleDescriptionMode...176

5.6.1.115 Axis.. 177

5.6.1.116 ARSRenderingSetup..177

5.6.1.117 BasketViewConfig..177

5.6.1.118 DescrType...179

5.6.1.119 Dimension...180

5.6.1.120 GetArticleDataOptions..180

5.6.1.121 InactiveFlag...181

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 8 of 298

EAIWS 4.16

5.6.1.122 InactivePositionState..181

5.6.1.123 MergeResult..181

5.6.1.124 OAPActionContext..182

5.6.1.125 OAPActionListItem..182

5.6.1.126 OAPActionResult..182

5.6.1.127 OAPActionState...182

5.6.1.128 OAPArticleData..182

5.6.1.129 OAPGeneralInfo...183

5.6.1.130 OAPAttachArea..183

5.6.1.131 OAPGeometry...183

5.6.1.132 OAPPointGeometry..183

5.6.1.133 OAPPointListGeometry...183

5.6.1.134 OAPPolyLineGeometry...183

5.6.1.135 OAPRectangleGeometry...184

5.6.1.136 RasterType..184

5.6.1.137 OAPDataDefinedPlacement..184

5.6.1.138 OAPDeleteObjectAction..184

5.6.1.139 OAPMethodCallAction..184

5.6.1.140 OAPMethodCallType..184

5.6.1.141 OAPObjectCategory...185

5.6.1.142 OAPObjectDefinition...185

5.6.1.143 OAPPlacement..185

5.6.1.144 OAPCreateObjectAction..185

5.6.1.145 OAPDataDefinedPlacement..185

5.6.1.146 OAPDeleteObjectAction..185

5.6.1.147 OAPDimChange...186

5.6.1.148 OAPDimChangeAction..187

5.6.1.149 OAPDimChange2Action..187

5.6.1.150 OAPPropEdit2Action..187

5.6.1.151 OAPPropEditAction..188

5.6.1.152 OAPPropEditClass...188

5.6.1.153 OAPPropEditProp..188

5.6.1.154 OAPRasterType...189

5.6.1.155 OAPRasterType...189

5.6.1.156 OAPSelectObjectAction..189

5.6.1.157 OAPShowMediaAction..189

5.6.1.158 OAPSymbolSize...189

5.6.1.159 PriceInfoElement..189

5.6.1.160 SeriesInfo..189

5.6.1.161 SetArticleProperties..190

5.6.1.162 SetLanguagesMode..190

5.6.1.163 SetPropertyValueOptions..190

5.6.1.164 TMColumnDef..191

5.6.1.165 TMColumnId..191

5.6.1.166 TMRow... 191

5.6.1.167 TMRowDef..191

5.6.1.168 TMTable..192

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 9 of 298

EAIWS 4.16

5.6.1.169 TMText.. 192

5.6.1.170 TMTextType...192

5.6.1.171 BasketViewSortConfig..192

5.6.1.172 ColumnSortOrder...192

5.6.1.173 SortGroup...192

5.6.1.174 SortGroupSelector..193

5.6.1.175 CollatorDecomposition..193

5.6.1.176 CollatorStrength...193

5.6.2 Faults... 193

5.6.2.1 BasketServiceFault...193

5.6.3 Operations... 193

5.6.3.1 adjustCalculationLineAmount...193

5.6.3.2 adjustCalculationLineValue..194

5.6.3.3 AdjustConditionValue..195

5.6.3.4 setLanguages..195

5.6.3.5 getLanguages..195

5.6.3.6 setConditionDescription..196

5.6.3.7 setCurrency...196

5.6.3.8 getCurrency...196

5.6.3.9 getTopFolderId...197

5.6.3.10 getFatherId..197

5.6.3.11 getManufacturerInfo..197

5.6.3.12 getSubItemIds..198

5.6.3.13 getAllItems..198

5.6.3.14 InsertArticleOptions..199

5.6.3.15 InsertOCDArticle (deprecated)...199

5.6.3.16 insertOFMLArticle...200

5.6.3.17 insertUserArticle...202

5.6.3.18 insertFolder...203

5.6.3.19 insertTextItem..204

5.6.3.20 deleteItems..204

5.6.3.21 mergeBasketArticles...205

5.6.3.22 SplitUpCompositeArticles..205

5.6.3.23 moveItems...206

5.6.3.24 relocateItems...206

5.6.3.25 convertToSetArticle...207

5.6.3.26 breakUpSetArticle..208

5.6.3.27 collapseSetArticles...208

5.6.3.28 expandSetArticles..208

5.6.3.29 addToSetArticle..209

5.6.3.30 removeFromSetArticle..209

5.6.3.31 changeAlternativePositionState..210

5.6.3.32 getItemProperties...210

5.6.3.33 setItemProperties...213

5.6.3.34 getArticleData..214

5.6.3.35 getArticleFeatures..215

5.6.3.36 getMultiArticleFeatures...215

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 10 of 298

EAIWS 4.16

5.6.3.37 getChoiceList...216

5.6.3.38 getAllChoiceLists..216

5.6.3.39 setPropertyValue..217

5.6.3.40 getGeneratedImage..219

5.6.3.41 getArticleRenderingSetup..226

5.6.3.42 getImages...229

5.6.3.43 getExportedGeometry...230

5.6.3.44 getConfigDependentMedia..239

5.6.3.45 getAllConfigDependentMedia..239

5.6.3.46 setBasketAppData..239

5.6.3.47 getBasketAppData..240

5.6.3.48 setItemAppData...240

5.6.3.49 getItemAppData...241

5.6.3.50 getMultiItemAppData..241

5.6.3.51 copy.. 241

5.6.3.52 paste..242

5.6.3.53 pasteContainer...243

5.6.3.54 listPricingProcedures..244

5.6.3.55 getPricingProcedure...244

5.6.3.56 addPriceCalculation..244

5.6.3.57 getPriceCalculationSheet..244

5.6.3.58 getPriceCalculationSheets...245

5.6.3.59 addManualCondition...246

5.6.3.60 removeCondition..246

5.6.3.61 setConditionAmount...247

5.6.3.62 resetConditionAmount...247

5.6.3.63 setQuantityRelation..248

5.6.3.64 resetQuantityRelation...248

5.6.3.65 getConditionTypes..248

5.6.3.66 listTaxSchemes..248

5.6.3.67 getTaxScheme...249

5.6.3.68 getCurrentTaxScheme..249

5.6.3.69 selectCurrentTaxScheme..249

5.6.3.70 getTaxInformation...250

5.6.3.71 setTaxInformation...250

5.6.3.72 resetTaxConfiguration...250

5.6.3.73 resetTaxScheme..250

5.6.3.74 setTaxRate..250

5.6.3.75 tmGetTable..251

5.6.3.76 tmGetText..251

5.6.3.77 tmSetText..251

5.6.3.78 tmSetTextVisibility..252

5.6.3.79 ResetTaxRate..252

5.6.3.80 updateBasketArticles..252

5.6.3.81 getReferenceCurrency..253

5.6.3.82 getExchangeRates...253

5.6.3.83 setExchangeRates...254

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 11 of 298

EAIWS 4.16

5.6.3.84 convertToUserArticles...254

5.6.3.85 getBasketColumns...255

5.6.3.86 removeBasketColumns...255

5.6.3.87 addBasketColumns..255

5.6.3.88 setBasketColumnProperties..256

5.6.3.89 getItemFields...257

5.6.3.90 setItemFields...258

5.6.3.91 resetItemFields..258

5.6.3.92 OapGetArticleData...259

5.6.3.93 OapGetInteractors..259

5.6.3.94 OAPInteractor..259

5.6.3.95 OAPMessageAction..260

5.6.3.96 OAPSymbolType..261

5.6.3.97 SymbolSize...262

5.6.3.98 OAPSymbolDisplay..262

5.6.3.99 oapProcessActions...262

5.6.3.100 OapGetActionData...264

5.6.3.101 OapSetClientCapabilities...265

5.6.3.102 GetBasketConfig..265

5.6.3.103 changeBasketConfig...265

5.6.3.104 getBasketViewConfigs..265

5.6.3.105 changeBasketViewConfig..265

5.6.3.106 setItemConditionDescription..266

5.6.3.107 addBasketView..266

5.6.3.108 startOFMLDebugging..267

5.6.3.109 stopOFMLDebugging..268

5.6.3.110 removeBasketViews...268

5.6.4 Image Generation..268

5.6.4.1 Differences Between Online Configurator and pCon.basket...268

5.6.4.2 Client control of the header Content-Disposition for files in the session cache...............269

5.7 Project Service.. 269

5.7.1 Type Definitions... 269

5.7.1.1 ProjectData..270

5.7.1.2 ProjectState...272

5.7.1.3 ProjectTextType...272

5.7.1.4 AddressData..272

5.7.1.5 CommAddress...273

5.7.1.6 ContactData..273

5.7.1.7 AutoSaveOptions...273

5.7.1.8 CountryData..274

5.7.1.9 DeleteProjectsOptions..274

5.7.1.10 DisplayName...274

5.7.1.11 FormattedText..274

5.7.1.12 ListCompletionsOptions..275

5.7.1.13 ListProjectsOptions...275

5.7.1.14 Permission..276

5.7.1.15 PriceList..276

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 12 of 298

EAIWS 4.16

5.7.1.16 ProjectFilter...277

5.7.1.17 ProjectFilterAttribute...277

5.7.1.18 ProjectFilterDateValue..277

5.7.1.19 ProjectFilterDateTimeValue...277

5.7.1.20 ProjectFilterNode...277

5.7.1.21 ProjectFilterStateValue..277

5.7.1.22 ProjectFilterStringValue...278

5.7.1.23 ProjectFilterValue...278

5.7.1.24 ProjectGroup...278

5.7.1.25 ProjectNumberScheme...279

5.7.1.26 ProjectSortSpec...280

5.7.1.27 ProjectText..280

5.7.1.28 SaveProjectOptions..280

5.7.1.29 SubdivisionData...281

5.7.1.30 AddressType..282

5.7.1.31 CommAddrType...282

5.7.1.32 TextFormat..282

5.7.1.33 ScopeInfo..282

5.7.1.34 ContactType..283

5.7.1.35 ProjectAttribute..283

5.7.1.36 LockingMode...284

5.7.1.37 ProjectFilterOperator..284

5.7.1.38 AuthMessageType..284

5.7.1.39 ProjectState...285

5.7.2 Faults... 285

5.7.3 Operations... 285

5.7.3.1 saveProject..285

5.7.3.2 listProjects...285

5.7.3.3 loadProject..286

5.7.3.4 closeProjects...286

5.7.3.5 getProjectKeys...286

5.7.3.6 setCurrentProject...287

5.7.3.7 setProjectData...287

5.7.3.8 SetProjectText..287

5.7.3.9 addPriceList...287

5.7.3.10 addProjectGroup..288

5.7.3.11 addProjectNumberScheme..288

5.7.3.12 authenticateUser..288

5.7.3.13 deleteProjects..288

5.7.3.14 getAddressData...289

5.7.3.15 getContactData..289

5.7.3.16 getCountries..289

5.7.3.17 getCountrySubdivisions...290

5.7.3.18 getPriceLists..290

5.7.3.19 getProjectData...290

5.7.3.20 getProjectGroups...290

5.7.3.21 getProjectNumberSchemes...290

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 13 of 298

EAIWS 4.16

5.7.3.22 getProjectTexts..290

5.7.3.23 listCompletions...291

5.7.3.24 newProject..291

5.7.3.25 removeAddressData...292

5.7.3.26 removeContactData..292

5.7.3.27 removePriceList...292

5.7.3.28 removeProjectGroup...292

5.7.3.29 removeProjectNumberScheme..292

5.7.3.30 setAddressData...292

5.7.3.31 setAutoSaveOptions...293

5.7.3.32 setContactData..293

5.7.3.33 updatePriceList..293

5.7.3.34 updateProjectGroup..293

5.7.3.35 updateProjectLock..294

5.7.3.36 updateProjectNumberScheme...294

6 Statistic Event Manager..295

7 SSL Setup... 298

7.1.1 HTTPS Support.. 298

7.1.2 Soap connection via WSDL...298

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 14 of 298

EAIWS 4.16

1 Prerequisites

1.1 Operating System

Please read the system requirements for more details. They can be found in the EasternGraphics Download
Center https://download-center.pcon-solutions.com/?cat=7.

1.2 Java Runtime Environment

The EasternGraphics Online Configurator requires a Java 8 Runtime Environment. It has been tested with
both the Java HotSpot(TM) 64-Bit Server VM (build 23.2) and the OpenJDK 64-Bit Server VM (build 23.2).

1.3 Port Mapper

For the EasternGraphics Online Configurator to be able to communicate with the license server the ONC/
RPC port mapper must be running.

Red Hat Enterprise Linux 6 / CentOS 6: The ONC/RPC port mapper is implemented by rpcbind(8). In
the default configuration of the port mapper (operating in secure mode) an RPC service must not only use
the loopback interface to register itself, but also a privileged port. As the license server is not supposed to be
run as root, and contains no code to use a privileged port for registration with the port mapper, rpcbind(8)
must be switched into insecure mode. One way to achieve this is to create the file
/etc/sysconfig/rpcbind and add a line consisting of RPCBIND_ARGS=-i to this file.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 15 of 298

EAIWS 4.16

2 Installation

A detailed installation guide can be found in the EasternGraphics Download Center https://download-center-
.pcon-solutions.com/?cat=7

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 16 of 298

EAIWS 4.16

3 Licensing

The EasternGraphics Online Configurator requires various licenses which must be enabled for the host it is
running on. Identification of the host is done through the name of the host and a host ID, short for host identi -
fier.

3.1 Obtaining the Host Name and Host ID

The host name is usually known and equal to the output of the hostname(1) command. However, the host
ID, as used by the license server of the Online Configurator, is different from the output of the hostid(1)
command1. Assuming the license server is not already running the following can be done to obtain the host
ID:

bash$ cd EAILS
bash$ java -jar LicenseServer.jar -log cons
NOTICE: Starting LicenseServer version 1.0.3
CONFIG: platform=amd64-linux
CONFIG: hostname=vaio, hostid=HHM5-N6MA-9ES2-DSEX

The license server can then be terminated using Control-C. Of course, the host name and host ID will be dif-
ferent from the values shown above.

If the license server is already running then the values can be obtained from the log file of the license server.
The log files of the license server are usually in EAILS/var/log.

3.2 Installation of License Files

License files for a particular host must be copied into the EAILS/etc/licenses directory of the license
server running on this host.

License files for hosts different than the host the license server is running on are ignored by the license
server after a message is written to the log file.

3.3 License Features

A license file contains one or more license features licensed for the host identified in the license file. A license
feature consists of the feature name, a version number, the expiration date (or 0000-00-00 if the feature does
not expire), a number indicating how often the feature is available, and optional attributes, in that order.

The license features of all valid license files are combined by the license server into a pool of license fea-
tures. This pool is used to serve license requests of the Online Configurator.

Once a feature has been requested by and leased to a particular instance of the Online Configurator it is no
longer available for use by other instances of the Online Configurator. Leases are refreshed periodically by
the Online Configurator. A leased license feature is moved back into the pool of available features if it is
either explicitly released by the Online Configurator holding its lease, or if its lease is not refreshed for the
duration of five minutes. Thus, the license features leased by a crashed instance of the Online Configurator
eventually become available again without the need to restart the license server.

3.3.1 Feature egr.eai.server

Each instance of the Online Configurator (i.e. each process) leases this feature during it is starting up. If the
feature is not available then the process terminates immediately.

1 On Linux, the host ID is computed based on the hardware address of eth0. If eth0 does not exist then it is computed based on the
hardware address of the first network interface found other than the loopback interface or a point-to-point interface.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 17 of 298

EAIWS 4.16

Example:

FEATURE egr.eai.server 1.0 0000-00-00 2

The example above allows two (additional) instances of the Online Configurator to run on the local host.

3.3.2 Feature egr.eai.server.session

Support for the license feature egr.eai.server.session was added in late 2016.

Important: Removed in EAIWS 4.1.

This feature is leased by the Online Configurator whenever a new session is opened using the
openSession operation of the SessionService. It is released when the session is explicitly closed by the
closeSession operation or after the session expired.

If this feature is not available (that is if the maximum allowed number of open sessions over all instances of
the Online Configurator running on this host has been reached) then the openSession operation fails with a
SessionServiceFault.

Example:

FEATURE egr.eai.server.session 1.0 0000-00-00 20

The example above allows twenty (additional) concurrent sessions over all instances of the Online Configur-
ator running on the local host.

3.3.3 Feature egr.eai.server.throughput

This feature has an attribute named operations_per_minute whose value is a positive integer specifying
the allowed number of non-trivial state-changing web service operations2 per minute. When the Online Con-
figurator is starting up it tries to lease one or more instances of this feature to meet the required number of
operations per minute as configured in the server start-up file (§4.1.4). To do so it first fetches all available
throughput features, sorts them in descending order according to the number of operations per minute, iter-
ates over the resulting list and leases the current feature if its number of operations per minute is less than or
equal to the remaining number of required operations per minute. This approach has two important implica-
tions:

• A throughput feature will always be ignored if it supports more operations per minute than configured
in the server start-up file. Thus, if the server is configured to support 200 operations per minute, but
the only available throughput feature supports 500 operations per minute, the Online Configurator
will fail to start as it would be unable to process any non-trivial state-changing web service operation.

• The operations per minute provided by a single throughput feature cannot be split between multiple
instances of the Online Configurator. For instance, if there were three throughput features available,
each providing 100 operations per minute, and two instances of the Online Configurator, each con-
figured to process 150 operations per minute, the allowed throughput of each instance of the Online
Configurator would be reduced to 100 operations per minute.

Note: Given these implications, one could be tempted to define license templates with many instances of the
throughput feature, each one allowing a single operation per minute. This would be a bad idea, however, as
leasing a single instance of a license feature requires a round trip to the license server, and such an ap-
proach could severely affect the start-up time of the Online Configurator (in the order of a second or so). So
each instance of the throughput feature should probably allow at least 10 operations per minute, a smaller
value being of questionable use anyway.

If the number of allowed operations per minute had to be reduced during start-up due to insufficient through-
put features then it will not ever be raised again for the current instance of the Online Configurator even if

2 Right now these are the insertOCDArticle and setPropertyValue operations of the BasketService.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 18 of 298

EAIWS 4.16

more instances of the throughput feature become available.

Example:

FEATURE egr.eai.server.throughput 1.0 0000-00-00 10
operations_per_minute=100

The example above provides 10 instances of the throughput feature, and each instance allows 100 opera-
tions per minute, so in total this example allows 1000 operations per minute.

3.3.4 Feature egr.eai.dsr.ofml_catalog

The Online Configurator must be able to lease one instance of this feature for each registered catalog pro-
file3. If no instance of this feature is available then a message will be written to the log file and the catalog
profile will be ignored.

For an old-style manufacturer profile the number of required instances of this feature is equal to the number
of different OFML manufacturers used by all product and catalog packages referenced from that profile.

If different session start-up files share the same catalog or manufacturer profile then this profile is counted
only once.

The current implementation never releases an instance of this feature once it has been leased, even if the
profile is no longer referenced by one of the session start-up files.

Example:

FEATURE egr.eai.dsr.ofml_catalog 1.0 0000-00-00 5

The example above allows the use of five catalog profiles over all instances of the Online Configurator run-
ning on the local host.

3.3.5 Feature egr.eai.ws.project.ProjectStore

The EAI-Server instantiates the project store if and only if the application feature 'egr.eai.server.Pro-
jectStore' is available.

For the project web service to be able to use the project store, the application feature
'egr.eai.ws.project.ProjectStore' must be available and the session startup property with the same name
must not be set to 'false'. Furthermore, the EAI-Server must support the project store (see above).

Both application features are mapped to license feature 'egr.eai.server.project_store'. So for the
project store to be available, this license feature must be available and the session startup property
'egr.eai.ws.project.ProjectStore' must not be set to 'false'.

3.3.6 Further License Features

The Online Configurator tries to lease a single instance of the features below the first time they are used. If
no instance of the feature is available at this point the feature will be permanently disabled for this instance of
the Online Configurator.

Feature Description

egr.eai.server.ofml.multiple_catalogs Several catalogs of one manufacturer can be
processed. Without this feature only one catalog per
manufacturer will be processed.

egr.eai.server.ofml.prices Prices will only be available if this feature is active.

3 The canonical path name of the profile is used to identify a profile for the purpose of licensing.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 19 of 298

EAIWS 4.16

egr.eai.server.export.image Image Export Feature (§5.6.3.40)

egr.eai.server.export.gltf Export of GLTF geometry (format=GLTF)

egr.eai.server.export.usd Export of USD geometry (format=USD)

egr.eai.server.export._3ds Export of 3DS geometry (§5.6.3.43)

egr.eai.server.export.dwg Export of DWG and DXF geometry (§5.6.3.43)

egr.eai.server.export.skp Export of SKP geometry (§5.6.3.43)

egr.eai.server.export.fbx Export of FBX geometry (§5.6.3.43)

egr.eai.server.export.obj Export of OBJ geometry (§5.6.3.43)

egr.eai.server.export.dae Export of Collada geometry (§5.6.3.43)

egr.eai.server.export.gfx Export of GFX (§5.6.3.43)

egr.eai.server.export.gfx_obx Export of GFX including OBX for commercial
information (§5.6.3.43)

egr.eai.server.export.igxc Export of IGXC (§5.6.3.43)

egr.eai.server.export.gfj Export of GFJ (§5.6.3.43)

egr.eai.server.export.ccl Export of CCL

egr.eai.server.basket Basket functions are provided like application
specific data (§5.3), project settings (§5.4.1.6),
further basket item types (§5.6.1.7).

egr.eai.basket.set_articles Set Article functions are available. (§5.6.3.25)

egr.eai.basket.alternative_positions Convert ariticles to alternative positions (§5.6.1.27)

egr.eai.server.save_load Enables the OBK save / load function (§5.4.3.14,
§5.4.3.15)

egr.eai.basket.copy_paste Enables the OBX copy / paste function for more than
one article. (§5.6.3.51, §5.6.3.52)

egr.eai.server.multiple_positions If this feature is available more than one article /
aggregate can be inserted into a session.

egr.eai.server.image_cache Activates the global file cache (§4.1.16)

egr.eai.basket.group_calculation Enables group calculation.

egr.eai.basket.move_items Enables functions for structural changes of the
basket item tree (indent, unindent, move up, move
down). (§5.6.3.23)

egr.eai.server.pricing Enables basket calculation.

egr.eai.server.ofml.package_groups Enables package groups.

egr.eai.server.statistics_events Enable delivery of statistics events.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 20 of 298

EAIWS 4.16

3.4 Running the License Server

The directory EAILS contains the shell script elicsrv that can be used to start, stop and restart the license
server.

3.4.1 Starting the License Server

The license server can be started with the start action of the elicsrv script:

$ elicsrv start

Before the license server registers itself with the port mapper it checks whether another license server is
already running. If so, it writes a message to the log file and terminates4.

3.4.2 Stopping the License Server

The license server can be stopped with the stop action of the elicsrv script:

$ elicsrv stop

While the script terminates immediately the license server will take about five seconds before it terminates.

Note: The license server must not be stopped while a local Online Configurator is still running as otherwise
the Online Configurator would not be able to lease new license features, effectively preventing new sessions
from being opened. Furthermore, a future version of the Online Configurator may choose to stop servicing
requests if the license server is no longer accessible or has been replaced by a new instance of the license
server.

3.4.3 Restarting the License Server

The license server can be restarted with the restart action of the elicsrv script:

$ elicsrv restart

The restart action should be used instead of the stop action followed by the start action as it ensures
that the old license server has terminated before the new one is started5.

4 Repeated starts of the license server should be avoided if a license server is already running as this would cause the log file of the
running license server to be deleted while it is still running.

5 Right now this is done by simply waiting for ten seconds after the old license server has been told to terminate itself and restarting
the new one.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 21 of 298

EAIWS 4.16

4 Configuration

4.1 Server Start-Up File

The server start-up file contains settings that affect the Online Configurator as a whole, as opposed to ses-
sion specific settings that are placed in one or more session start-up files.

Server start-up files are always stored in the $EAIWS/etc/startup directory. By default, the name of the
server start-up file is server.cfg. It can be changed using a command line option (§4.3.2.1).

Empty lines, lines consisting entirely of white space, and lines starting with a number sign (#) after a possibly
empty sequence of white space are ignored.

The options available for use in the server start-up file are described in the following sections.

4.1.1 Default Locale

Synopsis: app.framework.locale=<locale>

Default Value: not set

The value of this option specifies the name of the default locale used for new sessions. It may be overridden
by a locale specification (using the same key) in a session start-up file, or by the -locale argument of the
openSession operation (§5.4.3.2). The format of valid locale names is described in section 5.4.3.10.

In addition to the effects of a sessions current locale on the behavior of the session as described in section
5.4.3.10, the default locale of a session also determines the currency used by the basket service at the be-
ginning of a new session.

4.1.2 Fixer Compatible web-service

Synopsis: egr.eai.basket.currency.fixer.api_base=<url>

Register other Fixer-compatible web service implementations. For instance, to use the open source Foreign
exchange rates API that provides exchange rates published by the European Central Bank, the server start-
up file should contain one or both of the following entries:

egr.eai.basket.currency.fixer.api_base=http://api.exchangeratesapi.io/

egr.eai.basket.currency.fixer.api_base=https://api.exchangeratesapi.io/

See the following chapter for more details.

4.1.3 Known Currencies

Synopsis: app.basket.currencies=<currencies>

Default Value: currencies

The default value of this option is the name of a file describing all currencies known by the Online Configur-
ator, including their localized names and exchange rates. The currency configuration file must be accessible
as $EAIWS/etc/<currencies>.cfg.

The value of this property must be an URI-reference. If this reference is relative (i.e. does not contain a
scheme) and consists of a single path segment that does not contain a period then .cfg is appended to the
reference. Relative references are then resolved against the URI representing the etc/ directory.

The URI is then matched against the pattern returned by method getSourceURIPattern() of currency provider
factories to select the factory used to produce a currency provider.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 22 of 298

EAIWS 4.16

To use a Fixer-compatible currency provider (see https://fixer.io), the application start-up file property
app.basket.currencies must be set to the request URL used to access the Fixer-compatible web
service. The following restrictions apply:

• The path of the request URL must end with either /latest or with a slash followed by an ISOdate.

• The query component may contain only the following parameters:

access_key

the access key; required with data.fixer.io, but not necessarily required by alternative
implementations of the service

base

the base/reference currency; The default value is EUR. Note that this is also the only base
currency supported by the free pricing plan of the fixer.io service.

symbols

a comma-separated list of currency codes used to restrict the set of conversion rates
provided by the web service; Without this parameter the fixer.io service returns about 170
conversion rates, and the exchangeratesapi.io service (see below) returns about 30
conversion rates.

Example: http://data.fixer.io/api/latest?access_key=<access-key>

If the request path ends with /latest then the provider’s conversion rates are regularly updated a quarter
past every full hour. This results in about 700 to 750 updates per month which is within the limit of the
maximum number of monthly requests allowed by the free pricing plan of the fixer.io service as long as the
access key is used by only one instance of EAIWS.

Responses from successful requests are cached in var/ebasket/currency/fixer/cache using a
digest computed from the request URL as key (file name). The cache is used when the provider is first
accessed after an EAIWS (re)start. If a matching entry is found then the behavior is as follows:

• If the request path ends with an ISO date then the cached data is used.

• If the request path ends with /latest then the connect and read timeouts for the request are both
reduced to 5 seconds (instead of the default 30 seconds) and the cached data is used if the request
does not produce a valid result (due to timeout or some other error).

To use this provider with other Fixer-compatible web service implementations they must be registered using
application start-up property egr.eai.basket.currency.fixer.api_base. For instance, to use the
open source Foreign exchange rates API that provides exchange rates published by the European Central
Bank, the server start-up file should contain one or both of the following entries:

egr.eai.basket.currency.fixer.api_base=http://api.exchangeratesapi.io/

egr.eai.basket.currency.fixer.api_base=https://api.exchangeratesapi.io/

Then, the application or session start-up file property app.basket.currencies can be set to something
like

https://api.exchangeratesapi.io/2019-03-18?base=USD&symbols=EUR,USD,RUB

The example references a currency provider that uses USD as base currency and provides the conversion
rates for EUR, USD and RUB as published by the EZB for Mach 18, 2019.

4.1.4 Operations per Minute

Synopsis: egr.eai.server.operations_per_minute=<ops-per-min>

Default Value: unlimited

The value of this option must be either a positive integer or the string unlimited6.

6 Prior to version 2.0 RC 2, there was no default for this option (i.e. it always had to be specified in the start-up file), and the special

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 23 of 298

EAIWS 4.16

For the purpose of licensing, the number of non-trivial state-changing operations per minute the Online Con-
figurator is able to serve is limited. The number of operations per minute specified with this option may fur-
ther be reduced during start-up due to insufficient availability of throughput license features (§3.3.3).

Informational: The current algorithm used to limit the number of operations per minute works as follows (al-
though the implementation is quite different): Assuming n is the number of operations per minute, there is a
blocking queue of tickets with a maximum size of n. One thread inserts a ticket at the end of the queue every
60 / n seconds, blocking if the queue is full. Threads servicing operations take a ticket from the front of the
queue before they start one of the operations in question, blocking if necessary until a ticket becomes avail -
able. If more than one thread is waiting for a ticket to become available, then the longest waiting thread gets
the next ticket that becomes available.

4.1.5 Maximum Number of Concurrent Sessions

Synopsis: egr.eai.server.max_sessions=<max-sessions>

Default Value: 100

The value of this option specifies the maximum number of concurrent sessions supported by one instance of
the Online Configurator.

Note: The actual maximum for the number of concurrent sessions may further be limited by the number of
available session license features (§3.3.2) and vary over time if more than one instance of the Online Config-
urator is running on the same host, and if the sum of the configured maximum number of concurrent ses-
sions over all instances of the Online Configurator is greater than the number of available session license
features.

4.1.6 Timeout for Sessions

Synopsis: egr.eai.server.session_timeout=<timeout-in-seconds>

Default Value: 300

The value of this option specifies the number of seconds of inactivity the Online Configurator waits until it
automatically closes the session and eventually deletes session specific data from disk (see also $4.1.7).

In addition to the timeout in seconds, the properties can be set to a duration similar to ISO 8601 (see
https://en.wikipedia.org/wiki/ISO_8601#Durations), with the difference that 'Y' (year), 'M' (month) and 'W'
(week) are not supported, nor are the basic and extended formats PYYYYMMDDThhmmss and P[YYYY]-
[MM]-[DD]T[hh]:[mm]:[ss].

4.1.7 Session Suspend

Synopsis: egr.eai.server.session_suspend_timeout=<timeout-in-seconds>

The value of this option specifies the number of seconds of inactivity the Online Configurator waits until it
automatically moves the session specific data from RAM to disk. For session suspend to work, this property
must be set to a value less than the session timeout.

In addition to the timeout in seconds, the properties can be set to a duration similar to ISO 8601 (see
https://en.wikipedia.org/wiki/ISO_8601#Durations), with the difference that 'Y' (year), 'M' (month) and 'W'
(week) are not supported, nor are the basic and extended formats PYYYYMMDDThhmmss and P[YYYY]-
[MM]-[DD]T[hh]:[mm]:[ss].

4.1.8 Allowed File Access

Synopsis: egr.eai.server.file_access=<path-list>

Default Value: empty string

value unlimited was not supported.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 24 of 298

EAIWS 4.16

The value of this option must be a semicolon-separated7 list of absolute path names in the Online Configur-
ator’s local file system. The Online Configurator does not check whether the paths point to existing director-
ies or files.

The client may pass a file URI as the uri argument of the loadSession operation, or as the uri option of
the saveSession operation. For the Online Configurator to be able to load the session from this file, or save
it to this file, the file’s path or one of the files parent directories must be listed by this option.

4.1.9 OFML Debug

Synopsis: egr.eai.gf.cobra.enable_file_io=<true|false>

Default Value: false

If set to true, the -enableFileIO flag is passed to fConfigure(), allowing Cobra to do file IO operations
(necessary to write the OFML debug log into a file).

4.1.10 Rotation of Log files

If rotation of log files is not enabled, a log file named app_YYYY-mm-dd_HHhMMmSS.LLL.log is created
when the server starts and written to until the server terminates.

If rotation of log files is enabled, log messages are written to <appkey>.log until the log file is rotated. Rota-
tion of a log file renames it into <appkey>.log-YYYYmmdd, optionally followed by a minus sign and a serial
number and, if compressed, by suffix '.gz'. The serial number is used if more than one rotation happens per
day.

The logging subsystems checks whether or not to rotate whenever (and prior to) a log message is written un-
less the last check was less than five minutes ago. If the check determines that the log file should be rotated,
the current log file is closed, renamed, and optionally compressed, a new log file is created, and old log files
are deleted if the current number of rotated log files exceeds the configured number.

The following application properties can be used to control rotation of log files:

Synopsis: egr.eai.logrotate.ngen=<integer>

Default Value: -1

Controls the maximum number of rotated log files to keep until they are automatically deleted. Allowed val-
ues are within -1 and 2^31-1, both inclusive. If set to -1, rotation of log files is disabled. Otherwise it is en-
abled.

Synopsis: egr.eai.logrotate.min_size=<integer>

Default Value: 0

Log files smaller than the size (in kilo bytes) specified by this option are never rotated.Allowed values are
within 0 and 2^63-1, both inclusive.

Synopsis: egr.eai.logrotate.max_size=<integer>

Default Value: 0x7fffffffffffffff

Log files greater than the size (in kilo bytes) specified by this option are always rotated (as soon as the check
is done as described above), no matter what the value of property 'egr.eai.logrotate.when'. Allowed values
are within the value specified as the minimum size and 2^63-1, both inclusive.

Synopsis: egr.eai.logrotate.when=<string:>

May be used to specify the minimum time between log file rotations and a time when rotation shall take
place. The syntax, in EBNF, is as follows:

 when ::= interval? timespec?

7 On Unix-like operating systems, the colon may be used too.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 25 of 298

EAIWS 4.16

 interval ::= digit+

 timespec ::= ('@' date-time?) | ('$' period?)

 date-time ::= ((year? month)? day)?
 'T'
 (hour (minute ? second?)?)?

 period ::= ('D' hour-of-day)
 | ('W' day-of-week ('D' hour)?)
 | ('M' day-of-month ('D' hour)?)

 year ::= digit digit digit digit // 0001..9999
 month ::= digit digit // 01..12
 day ::= digit digit // 01..31
 hour ::= digit digit // 00..23
 minute ::= digit digit // 00..59
 second ::= digit digit // 00..59

 hour-of-day ::= digit? digit // 0..23
 day-of-week ::= digit // 0..7, with both 0 and
 // 7 representing Sunday
 day-of-month ::= (digit? digit) // 1..31
 | [Ll] // 'L' and 'l' indicate
 // last day of month

 digit ::= [0-9]

If the value of this property is an empty string (the default), the the decision whether or not to rotate the log
file is solely based on the maximum size (thus, with both 'max_size' and 'when' are set to their default values,
no rotation takes place).

Otherwise, the time the log file should be rotated next is determined as follows:

1. The time of next rotation is set to the time of the last rotation (the modification time of the most
recently rotated log file, or the time the application has been started if no rotated log file exists).

2. If an interval has been specified, the interval is treated as a number of hours and added to the next
rotation time.

3. If a rotation time has been specified, the time of next rotation is adjusted to the smallest possible
value greater than the current value that matches specified time. Unspecified year, month, day(-of-
month) and day-of-weak do not cause an adjustment, whereas unspecified hour, minute and second
set the corresponding field to zero.

Finally, if the time of next rotation is less than or equal to the current time, the log file is rotated.

Examples:

 10
 rotate every ten hours

 @01T01
 rotate the first day of each month at 01:00 AM

 47$D23
 rotate every 47 hours, but wait until 11:00 PM

 $W5D23
 rotate every Friday at 11:00 PM

 $M1
 rotate the first day of each month at midnight

 $MLD23
 rotate the last day of each month at 11:00 PM

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 26 of 298

EAIWS 4.16

4.1.11 HTTP Server Options

4.1.11.1 Port Number

Synopsis: egr.eai.server.http.port=<port-number>

Default Value: 8080

The port number to use instead of 8080. May be overwritten by the port specified as part of egr.eai.server.ht-
tp.listen.

4.1.11.2 HTTP Server

Synopsis: egr.eai.server.http.listen=<host>[':'<port>]

Create an HTTP server for each address specified by <host>. <host> must be an IPv4 address, an IPv6 ad-
dress enclosed in square brackets ('[' and ']'), or a host name.

If <host> is a host name, the name is resolved to determine all addresses of the host. If resolution of the host
name fails, EAIWS terminates with an error. Otherwise, an HTTP server is created for each address pro-
duced by resolution.

This option may be specified multiple times to listen on multiple internet addresses. Use of this option pre-
vents the creation of an HTTP server listening on the wildcard address.

4.1.11.3 HTTP Request Executer

The initialization of the HTTP request executor can now be configured through the following application
properties:

Synopsis: egr.eai.server.http.thread_pool.max_pool_size

The maximum number of threads in the pool. The value must be within -1 and 1024 (both inclusive). The de-
fault value is -1.

If the value is -1, the actual maximum pool size is equal to the number of processor available to the Java
runtime at startup, multiplied by two. Note that in case of Intel Hyper-Threading, this is the number of visible
CPUs, not the number of CPU cores (i.e., in the most common case, 8 instead of 4).

If the value is zero, no thread pool is used. Instead, all requests are serviced by the HTTP server thread. This
may be useful for special cases where it is known that the server services requests for a single single-
threaded client.

Synopsis: egr.eai.server.http.thread_pool.keep_alive

The number of seconds to keep an idle thread alive. The value must be withn -1 and 2^31-1 (both inclusive).
The default value is 5.

If the value is -1, threads are kept alive infinitely. In general, a value of zero should be avoided as it would
result in continual thread replacement.

This property is ignored if no thread pool is used (i.e. if the maximum pool size is zero).

Synopsis: egr.eai.server.http.thread_pool.queue_size

The upper bound on the size of the queue used to store pending requests. The value must be within -1 and
65536 (both inclusive). The default value is 1024.

 A value if -1 results in a queue with unlimited length. Otherwise, when the HTTP server adds a request to
the queue, and the queue size has reached its upper bound, the HTTP server waits until a request has been
removed from the queue by one of the threads servicing requests.

The special value zero is allowed and results in the use of a queue where each add operation of the HTTP
server waits for a corresponding remove operation of one of the request service threads.

This property is ignored if no thread pool is used (i.e. if the maximum pool size is zero).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 27 of 298

EAIWS 4.16

4.1.12 Automatic Generation of Article Images

Synopsis: egr.eai.server.export.image=<true|false>

Default Value: true

This option controls whether the automatic generation of article images is supported, provided the necessary
license feature is available (§3.3.6). If the value of this option is false, or if the license feature is not avail-
able, the operation getGeneratedImage of the BasketService always returns an empty string.

4.1.13 3DS Geometry Export

Synopsis: egr.eai.server.export._3ds=<true|false>

Default Value: true

This option controls whether the export of 3DS geometries for article positions is supported, provided the ne-
cessary license feature is available (§3.3.6). If the value of this option is false, or if the license feature is not
available, the operation getExportedGeometry of the BasketService always returns an empty string
when called with format=3DS.

4.1.14 OFML File Extensions

Synopsis: egr.eai.http.ofml_extensions=<list-of-extensions>

Default Value: .bmp,.jpg,.jpeg,.rgb,.tga,.3ds,.dwg,.dxf,.geo,.pec,.svg,.html,.pdf

The set of OFML data files served by the HTTP server has been limited to files whose name ends with an ex-
tension from a configurable set of extensions. The HTTP server ignores case when it compares the exten-
sion of the path name of a GET request with the extensions from this set8.

The default set of extensions consists of the extensions listed above as the default value for this option.

The set of extensions can be overwritten or augmented in the server start-up file with one or more uses of
this option. They are processed in the same order they appear in the server start-up file. The value for each
of these options must start with an optional PLUS SIGN (U+002B) followed by a possibly empty list of exten-
sions. Extensions must consist of a PERIOD (U+002E) followed by one or more alphanumeric ASCII charac-
ters. Multiple extensions must be separated by COMMA (U+002C). ASCII white space in front of the PLUS
SIGN (if present) and around extensions is ignored. If the value starts with a PLUS SIGN, then the currently
configured list of extensions is augmented with the list of extensions contained in this entry. Otherwise the list
of extensions in the current entry replaces the currently configured set of extensions.

4.1.15 HTTP Server Root

Synopsis: egr.eai.http.server_root=<context>:<path>

Default Value: not applicable

Besides its ability to handle SOAP calls and serve URLs returned as part of the response message of SOAP
calls (like catalog images, generated article images, and exported geometries) the integrated HTTP server
also provides a very simple general purpose HTTP server whose functionality is limited to serving GET re-
quests for plain files.

The value of this option consists of a context and an absolute path, separated by a colon character. The
<context> is matched against the beginning of the URL paths from incoming GET requests, and the
<path> is interpreted as the absolute path of a directory within the local file system. Together they define a
server root. The option can be used multiple times to define multiple server roots.

The <context> must begin and end with a slash character. The <path> must be absolute and should use
the platforms default file name separator. If it does not end with a file name separator, a file name separator

8 The comparison has been case sensitive in EAIWS versions prior to 3.0 RC 1.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 28 of 298

EAIWS 4.16

is appended.

When a GET request comes in, the HTTP server decodes escaped octets within the path of the request
URL9 and replaces sequences of slash characters with a single slash. It then selects the server root whose
context is the longest matching10 prefix of the request path. If no such server root is found, the server sends a
404 (Not Found) response message. Otherwise, it removes the context from the request path to form a relat-
ive request path.

The server then substitutes slashes within the relative request path with the platform’s default file name sep-
arator. If the resulting path contains two consecutive dots as an element, then the request is rejected with an
403 (Forbidden) response message. Otherwise, the path is appended to the absolute path specified for the
server root to form the absolute path of the file to retrieve. If the resulting path does not represent a file, or
cannot be opened for reading, the server sends a 404 (Not Found) response. Otherwise it sends a 200 (OK)
response containing the file.

4.1.16 Global File Cache

The primary purpose of the global file cache is the reduction of the average time spent in the get-
GeneratedImage operation (§5.6.3.40) of the basket service. To do so, this operation computes a hash
over the 3D geometry of an OFML object and the rendering and camera settings as well as all other settings
passed as options to the image generation operation. The hash is converted to a file name. If the cache con-
tains a file with this name, the file is expected to contain the requested image11. If not, the image is generated
and stored in the cache using the computed file name.

This algorithm has some advantages and drawbacks. It is quite simple and efficient, having nearly constant
complexity, even for very large caches. On the other hand, all cached images become useless whenever
there is a change to the aforementioned hash function12, while modifications to the rendering algorithm do
not result in old images being invalidated13.

By default, the cache directory is var/cache within the Online Configurator’s installation directory. If the
cache is to be stored somewhere else, var/cache may be replaced by a symbolic link to either an empty
directory or a complete copy of an existing cache.

It is not allowed to share a cache between multiple instances of the Online Configurator.

The cache must not be modified by a program other than the Online Configurator. Individual files must not be
deleted, nor copied into the cache (either from another cache or from a backup). The only allowed operations
are deleting the entire cache (all files and sub-directories within var/cache, and optionally var/cache it-
self), and copying or restoration of the entire cache.

4.1.16.1 Maximum Cache Size

Synopsis: egr.eai.fscache.size=<size-in-KiB>

Default Value: unlimited

This option sets the target cache size. The actual amount of disk space used may be larger because:

• The cache cleaner does not delete objects that are in use. Therefore, if the target size of the cache is
quite small, the total size of all used objects may be greater than the target size.

• The cache performs its size computations in KiB (number of bytes divided by 1024 and rounded up
to the next integral value). If the block size of the file system is greater than one KiB, files may actu-
ally use more disk space than assumed by the cache.

• The size of file system meta data (i-nodes, directories) is not considered by the cache at all.

9 Escaped octets that do not represent an ASCII character are expected to be part of a sequence of escaped octets that forms the
UTF-8 encoding of an Unicode character. If this is not the case, the behavior is undefined.

10 The comparison of the context with the beginning of the request path is case sensitive.
11 In theory, the hash function (MD5) could compute the same hash for different article configurations and options. In practice, however,

this is expected not to happen.
12 While this reduces the efficiency of the cache, other than that it should not be a problem as these image will be removed from the

cache once it has reached it’s maximum size.
13 Thus, whenever a new version is installed which is known to have significant improvements to the image rendering algorithm, the

entire cache should be deleted by hand.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 29 of 298

EAIWS 4.16

The default value unlimited is used if the option is not specified, or if the option value is an empty string. It
must not be specified literally as the option value.

If the cache size is not limited, the Online Configurator does not remove unused images as the cache fills up.
If disc space is not an issue, the cache size may be left unlimited without significant impact on the cache’s
performance14.

4.1.16.2 Use of Extended Attributes

Synopsis: egr.eai.fscache.use_extended_attributes=<true|false>

Default Value: false

By default, the data stream of cache files contains both metadata about the files content (like image width
and height) as well as the actual file data. Therefore, the cache files can not be used as ordinary image files.

If the file system used to store the cache supports extended attributes, this option can be set to true to store
the metadata as an extended attribute. This is a prerequisite for optimizations enabled with the
egr.eai.fscache.transfer_modes option.

If this option is set to true, the Online Configurator ensures that the file system used to store the cache ac-
tually supports extended (user) attributes. If it does not, the Online Configurator terminates with an error
message.

For more information about Linux file systems and their support for extended attributes, see attr(5), sec-
tion FILESYSTEM DIFFERENCES.

4.1.16.3 Transfer Modes

Synopsis: egr.eai.fscache.transfer_modes=<list-of-transfer-modes>

Default Value: copy

The value of this option must be a possibly empty, comma-separated list of copy, symlink, hardlink and
link, with link being a shortcut for both symlink and hardlink.

The option lists the transfer modes considered for use by the Online Configurator whenever a file must be
transferred between the cache and a sessions working directory.

The copy mode is always considered, whether or not it is listed by this option.

If the use of extended attributes is disabled (see §4.1.16.2), the link transfer modes are not considered, even
if they are listed by this option.

From the list of configured transfer modes, the cache selects the transfer mode it deems best for the opera-
tion in question. It does not, however, consider the capabilities of the underlying operating system or file sys-
tem. In particular, if the file cache and the session cache are stored on different file systems, the hardlink
mode must not be used.

From a performance point-of-view, hardlink is the most efficient, shortly followed by symlink. The copy
mode is the least efficient, as in addition to the metadata operations necessary to write or update the direct-
ory and i-node, it also requires the complete file data to be read and written, which may be quite resource
consuming, especially for large files.

4.1.17 Java System Properties

Synopsis: system:<property>=<value>

Default Value: not applicable

Lines starting with system: can be used to set the value of Java system properties. Note that this is similar,

14 Assuming a cache size of one terabyte, and an average file size of 50 kilobyte, the leaf directories storing the cached files contain, on
average, somewhat more than 300 files. Even for file systems with linear directory search this is still a reasonable size. File systems
that use tree structures for their directories (XFS, EXT3, EXT4, among others) should be able to accommodate much larger caches.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 30 of 298

EAIWS 4.16

but not identical, to using the -D<property>=<value> command line option of the Java Virtual Machine as
with the command line option the property is set from the very beginning of the execution of the Online Con-
figurator, whereas with a start-up file entry the property is set early during start-up. In particular, there is no
point to set the egr.eai.fw.cmdline.AppRootDir property within the server start-up file, because the
server start-up file will not be found unless the application root directory is known.

4.1.18 Version Number of License Feature

Synopsis: egr.eai.fw.licensing.feature_versions=<list-of-feature-version>

Default Value: not applicable

The version number used when requesting a license feature can be configured. The value is a list of feature
version specifications, separated by backslash followed by newline. Each feature version specification con-
sists of a feature pattern, a colon, and the version number. The feature pattern is a glob-style pattern (see fn-
match(3)), supporting ?, *, ** and [...] placeholders, and using dot instead of slash as delimiter (** behaves
like *, but also matches delimiters).

4.1.19 Color Space

Synopsis: egr.eai.gf.color_space=<LinearRGB|sRGB>

Default Value: sRGB

Defines the color space the OpenGL rendering should use. Can also be defined in the session start-up file,
whereas a specification in a session configuration file takes precedence of a specification in the server start-
up file.

4.1.20 Stop-Word Filters

Synopsis: egr.eai.product.catalog.search.disable_stop_filter=<list-of-languages>

Default Value: not applicable

Disables stop-word filters by language.

The value of the property is a possibly empty comma-separated list of language tags (like 'de', 'de-DE', 'de-
Latf'). The stop-word filter for a language with a particular tag is disabled if this language tag or one of its par-
ent tags is listed in the value of this property. Thus, to disable stop-word filters altogether, the language tag
'und' may be used, representing the undetermined language.

While probably not of any practical importance, it should be noted that language tags are normalized. Thus,
'de-Latn' becomes just 'de', disabling the stop-word filter for all German languages, even if they use other
scripts.

(The parent tag of a language tag is the language tag with the least significant subtag (i.e. the last subtag)
removed, except in case the language tag consists of the primary language subtag only, where the parent
tag is 'und', representing the undetermined language. The language tag for the undetermined language has
no parent tag.)

4.1.21 GZIP-compressed Geometries

If a geometry file format has been selected for compression (based on its file name extension), the geometry
export creates, in addition to the original geometry file, a second compressed file that has the same name as
the original file, but with suffix .gz added.

The following two properties can be specified in the server start-up file to control compression of generated
geometry files:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 31 of 298

EAIWS 4.16

Synopsis: egr.eai.server.export.gzip.level=<level>

Default Value: 0

Level must be an integer between zero and nine, both inclusive. Compression is disabled (no compressed
file will be generated) if the specified level is zero. Otherwise, level controls the speed of compression,
whereas 1 indicates the fastest and 9 the slowest compression method. Obviously, the slower the
compression method, the better the compression ratio will (usually) be.

Synopsis: egr.eai.server.export.gzip.extensions=<extension-list>

Default Value: empty

Extension-list must start with an optional plus sign (+), followed by zero or more file extensions
separated by comma (,), with each file extension consisting of a period (.) followed by one or more US-ASCII
letters or digits. US-ASCII white space in front of the plus sign and around extensions is ignored.

The server start-up file may contain multiple occurrences of this property. If so, the second and subsequent
ones should probably start with a plus sign as the plus sign causes subsequent extensions to be added to
the current set of extensions (a non-empty extension list that does not start with a plus sign clears the current
set of extensions).

4.1.22 Property References

Property references consist of a previously defined property name enclosed in ${ and }. The property name
must consist of a non-empty sequence of alphanumeric US-ASCII characters, underline (_) and/or period
(.).

Property values that do not contain ${ are left unmodified. Property values that do contain ${ are processed
as follows:

• ${ must start a valid property reference or processing of the start-up file will fail. There must be a
previous definition of the referenced property in the same start-up file. The whole property reference
is replaced by the referenced properties current value.

• $$ is substituted by a single $, which will not be considered as a leading dollar sign in ${ or $$.

• Any other dollar sign is left unchanged.

One possible use of property references is easy switching between multiple copies of mirrored user applica-
tion (e.g. pCon.box) data sets. The relevant part of the start-up file may look as follows:

.data=/home/data/ofml
#.data=/home/data/ofml/.zfs/snapshot/2017-10-07

app.gf.data.profile.registration=${.data}/pCon.box/catalogs/default.profil
es
app.gf.data.profile.path=${.data}/pCon.box/catalogs/profiles
app.gf.data.path.substitution=,(^|[;:])/opt/pCon/_data/,1{.data}/,

4.1.23 OFML catalog cache database

Synopsis: egr.eai.product.catalog.oas.cachedb=<ebase|ods>

Default Value: ebase

The application property egr.eai.product.catalog.oas.cachedb can be used to select the back-end
of the OFML catalog cache database.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 32 of 298

EAIWS 4.16

4.1.24 OFML data cache backend

Synopsis: egr.eai.server.odc.backend=<h2mvs|bdb>

Default Value: bdb

Select OFML Data Cache backend. Value h2mvs selects the H2 Multi Version Store, whereas value bdb
selects Berkely DB Java Edition.

4.1.25 FAPI-shell Command Timeout

Synopsis:

egr.eai.gf.min_cmd_timeout=<time-in-seconds>

egr.eai.gf.max_cmd_timeout=<time-in-seconds>

Default Value: 0

Startup file (usually etc/startup/server.cfg) has two new optional entries egr.eai.gf.min_cmd_timeout
and egr.eai.gf.max_cmd_timeout. Values must be non-negative decimal, hexadecimal (prefix 0x or
0X) or octal (prefix 0) integers less than 2^31 representing lower and upper timeout limits in seconds.

The default value is zero, meaning 'unspecified' (i.e. no minimum or maximum).

Invalid values result in use of the default value and in a log message whenever an FAPI-shell is started.
Similarly, a minimum greater than the maximum (other than zero) results in a log message and the minimum
set to the maximum.

4.1.26 Default image options (server start-up file)

Synopsis:

egr.eai.server.export.default_image_options=<key/value list>

Default Value: empty

Added support for session startup option
egr.eai.server.export.default_image_options=<key/value list> It can be specified, with
decreasing priority, as part of the options returned by
ISessionManagerListener.getStartupProperties(), in the session startup file, or in the server
startup file. A higher priority startup option value, even if empty, completely replaces a lower priority value.

The startup option value is decomposed into a possibly empty list of strings representing image export
options as accepted by operation getGeneratedImage. Individual options are US-ASCII whitespace
separated quoted strings or key/value pairs. In case of key/value pairs, key and value must be separated by
a single equal sign (U+003D). Keys start with an optional dollar sign (U+0024) followed by a sequence of
one or more identifiers separated by a single full stop / period (U+002E). Values are either a quoted string or
a possibly empty sequence of non-whitespace characters. Key and value (decoded in case of a quoted
string) are concatenated, separated by a single equal sign, before appended to the list of image export
options.

Identifiers and quoted strings must adhere to ISO C89 rules.

The list of image export options is then validated the same way as done by operation getGeneratedImage.

If the startup option value does not conform to the rules described above, or the resulting list of image export
options contains an invalid option, the openSession operation fails.

4.1.27 Support for response headers

Synopsis:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 33 of 298

EAIWS 4.16

egr.eai.http.response_headers==<path pattern: HTTP response header field>

Default Value: empty

The option value consists of a path pattern and a HTTP response header field, separated by a path
separator character (semicolon (U+003B) on Windows and semicolon or colon (U+003A) on Unix-like
systems).

The path consists of a non-empty prefix and a possibly empty pattern (even though an empty pattern
doesn't make much sense as of now as URLs ending with a slash produce a 404 Not Found response).

The path prefix consists of the longest sequence of characters other than asterisk (U+002A) starting and
ending with a slash. The path prefix must literally match the beginning of an URL path.

The pattern consists of a sequence of characters other than asterisk (which must literally match a
corresponding characters in the URL path), interspersed by zero or more sequences of one or more
asterisk. A single asterisk matches a sequence of zero or more characters other than slash,
whereas a sequence of two or more asterisks matches a possibly empty sequence of any character.

The response header field consists of field name and file value according to RFC 9112, Section 5, Field
Syntax.

The field name must match one of the supported field names (ignoring case), and the field value must
conform to the rules for that field name.

The only field name currently supported is Cache-Control. The rules for the field value are defined in
RFC 9111, Section 5.2, Cache Control, Subsection 5.2.2, Response Directives. In case of different rules for
sender and receiver, the rules for senders apply.

The startup file may contain multiple egr.eai.http.response_headers option lines. The effective line is
determined as follows:

Only lines whose path prefix and pattern match the normalized path component of the request URL are
considered.

Lines with a longer matching path prefix take precedence over lines with a shorter matching path
prefix.

If there are multiple matching lines with equal path prefix but different patterns, the line that appears
last in the startup file is used.

Example:

egr.eai.http.response_headers=/**:Cache-Control: public, max-age=3600
egr.eai.http.response_headers=/session-cache/**:Cache-Control: public, max-age=86400
egr.eai.http.response_headers=/OFML/**:Cache-Control: public, max-age=2592000

Examples for paths:

/prefix/*.foo
All files ending with .foo in directory /prefix/ (but not in subdirectories of /prefix/)

/prefix/**.foo
All files ending with .foo in directory /prefix/ and subdirectories of /prefix/ at any depth.

/prefix/**/*.foo
All files ending with .foo in subdirectories of /prefix/ at any depth.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 34 of 298

EAIWS 4.16

/prefix/*/*.foo
All files ending with .foo in immediate subdirectories of prefix.

4.1.28 Statistics Event Manager

4.1.28.1 Block Size and Queue Size
A local event queue is basically a large ring buffer consisting of one or more dynamically allocated blocks.
Posted events are appended to the buffer (serialized as CBOR), whilst the consumer reads events from the
front of the buffer.

The maximum size of the ring buffer (the queue size) is limited. If serialization of a group of events results in
a buffer overflow, all events in the group are silently discarded. The consumer can use
IStatsEventQueue.getDiscardedEventCount() to obtain the number of discarded events.

Two application properties can be used to configure block and buffer/queue size:

• egr.eai.fw.statistics.local_queue.block_size -- the block size; Valid values are
between 64 and 524256 (slightly less than 512 KB), both inclusive. The default value is 4096.

• egr.eai.fw.statistics.local_queue.size -- the queue size; Valid values are between
1024 and 2147483647 (0x7fffffff), both inclusive.

The queue size must be at least as large as the block size, and is rounded up to a multiple of the block size.

The ring buffer consists of at most n + 1 blocks, where n is the queue size divided by the block size. The ex-
tra block is necessary to prevent the effective queue size from becoming smaller than the configured queue
size (the effective queue size is the total queue size minus the number of bytes already read from the first
block).

4.1.28.2 HTTP/HTTPS server

In addition to local event queues, the event manager allows events to be forwarded to an HTTP/HTTPS
server using POST requests with content type application/json. The content of each request consists of
a single JSON array, with each element representing an event. Each event consists of a two-element array.
The first element is an UUID identifying the event type. The second element is a JSON object containing the
actual event data (see §6).

Configuration of the HTTP (client) event queue is primarily done using the following application properties:

• egr.eai.fw.statistics.http_client.url -- The http or https URL of the server; There is no
default value. If the property is not defined, the HTTP event queue is not active.

• egr.eai.fw.statistics.http_client.certificate_validation -- In case of an HTTPS
server using a self-signed certificate, the property may be set to false to suppress certificate valid-
ation on the client side. The default value is true.

If an HTTP (client) event queue has been configured, posted events are serialized into a message object.
The message object will eventually be handed over to a separate upload thread using a queue of message
objects. The upload thread sends the message to the server, using it as the content (entity body) of a POST
request.

The message currently being constructed from newly posted events is completed and handed over to the up-
load thread if the age of the first event in the message, or the total size of the message after serialization of
an event (or a group of events that have been posted together), exceeds the following configurable values:

• egr.eai.fw.statistics.http_client.max_event_delay -- the maximum time an event
spends in a partially constructed message before the message is completed and handed over to the
upload thread; The value must be specified as a number of seconds or as an ISO-8601 duration (lim-
ited to D, H, M, and S components). The default value is one hour.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 35 of 298

EAIWS 4.16

• egr.eai.fw.statistics.http_client.target_message_size -- The maximum message
size limit in bytes. The default value is 0x10000 (64 KB). Note that this is not a hard limit (see
above). The maximum allowed value is 1 GByte.

If this property is set to zero, each message consists of a single event (or of a group of events that
have been posted together), and there is no delay between the serialization of events to the mes-
sage and the handing over of the message to the upload thread.

The upload thread takes messages from the message queue fed by the event manager. The message queue
may contain multiple messages if they are generated at a faster rate than they can be uploaded to the
server. To avoid excessive growth of the message queues, the maximum size of the message queue can be
configured with

• egr.eai.fw.statistics.http_client.max_queue_size -- the maximum size of the mes-
sage queue in bytes. The default value is 0x100000 (1 MB).

If the event manager completes a message and attempts to feed it to the message queue, but doing
so would result in the total size of all messages in the queue to exceed this value, the message is re-
jected by the queue. The event manager writes an INFO log message and discards the message.

Once the upload thread has taken a message from the message queue, it compares the age of the message
with the value of property

• egr.eai.fw.statistics.http_client.max_message_age -- the maximum age of a mes-
sage before it is discarded by the upload thread. The value must be specified as a number of
seconds or as an ISO-8601 duration (limited to D, H, M, and S components). The default value is two
hours.

The upload thread writes an INFO log message and discards a message taken from the message
queue if the age of the message (the time elapsed since the posting of the first event in the mes-
sage) exceeds the value configured by this property.

If the message is not expired, the upload thread establishes a connection to the server and constructs a re-
quest with POST as its request method. The request property Content-Type is set to application/json.
The following application property can be used to define additional request properties:

• egr.eai.fw.statistics.http_client.extra_request_properties -- one additional re-
quest property to be sent to the server. The property value must conform to the production field-line
of RFC 9112.

This application property may be used repeatedly to specify multiple request properties.

The request is sent to the server, using the message as the request's content. The server should respond
with a 200 (OK) status code or, preferably, with a 204 (No Content) status code (as any content sent as part
of the response is discarded anyway).

If there is an IO error sending the request or receiving the response, or if the response contains a status
code which does not indicate success, the upload thread either discards the message or puts it back at the
head of the message queue. In general, the message is discarded unless

• it can be said with absolute certainty that the server hasn't received the complete message, or

• the server responded with status code 404 (Not Found), 408 (Request Timeout), or 503 (Service Un-
available).

In either case (discard or put back), the upload thread pauses further processing for a configurable amount
of time:

• egr.eai.fw.statistics.http_client.error_retry_delay -- the time to wait after a failed
upload attempt encoded as a number of seconds or an ISO-8601 duration (limited to D, H, M, and S
components); The default value is ten minutes.

While (mostly) sleeping for the configured amount time, the upload thread still removes expired messages
(messages whose age is greater than the maximum message age) from the message queue so the event
manager doesn't have to discard messages it wants to hand over to the upload thread just because the mes-
sage queue has filled up with expired messages.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 36 of 298

EAIWS 4.16

• egr.eai.fw.statistics.http_client.encoding -- the method used by the HTTP client
event queue to encode statistics event sent to the server; possible values are:

◦ json -- data is sent as a single JSON array, with each element representing one event (the de-
fault)

◦ json-lines -- data is sent using JSON Lines encoding, with each line containing one event

◦ cbor -- data is sent as a single CBOR array, with each element representing one event

◦ cbor-records -- data is sent using a proprietary binary record format, with each record con-
taining one CBOR-encoded event

Depending on the encoding, the Content-Type of the POST request is set to either application/json,
application/jsonl, application/cbor, or application/x.egr-cbor-records.

Use of JSON lines and CBOR records may be necessary (depending on the implementation) for the server
to recover from decoding errors, as may happen (again depending on the implementation) in case of un-
known event types.

Use of CBOR instead of JSON reduces the size of serialized data by about factor two. Most notably, this af-
fects the amount of data which can be buffered by the client (EAIWS) in case of temporary unavailability of
the server (assuming equal maximum queue size). It also reduces the frequency of POST requests issued
by the client and/or content size of request messages (assuming equal maximum message size and event
delay).

Compression allows more events to be buffered on the client (EAIWS) side in case of temporary server fail -
ure. If compression is enabled, the content of HTTP POST messages used to transfer events to the server is
also compressed.

• egr.eai.fw.statistics.http_client.compression -- specifies the compression method:

◦ none -- no compression (the default)

◦ deflate -- "zlib" data format (RFC1950) containing a "deflate" compressed data stream
(RFC1951) that uses a combination of the Lempel-Ziv (LZ77) compression algorithm and Huff-
man coding; The Content-Encoding header field of the POST request is set to deflate.

◦ gzip -- an LZ77 coding with a 32-bit CRC that is commonly produced by the gzip file compres-
sion program (RFC1952). The Content-Encoding header field of the POST request is set to gzip.

• egr.eai.fw.statistics.http_client.compression_level -- the compression level used
in case compression is enabled; The compression level must be a value between 1 and 9, both in-
clusive. The default value is 6.

The configured compression level is ignored if compression is not enabled.

Given the difficulties to determine the final compressed message size while compression is still in progress
(a considerable amount of the data about to be compressed is still buffered in the compressor), compressed
messages use a different algorithm to compute the message size which compared against the maximum
message size (which actually behaves as a target message size) as configured with application property
egr.eai.fw.statistics.http_client.max_message_size. In case of compressed messages, the
current estimated message size is computed as the larger of the number of bytes of compressed data pro-
duced so far, and the number of bytes of uncompressed data divided by the weighted average of recent
compression rates.

Enabling of compression has no immediate effect on the performance of operations emitting statistics events
because serialization of these events is done by a separate thread.

4.2 Session Start-Up File Options

The session start-up file contains options that can vary between sessions.

Session start-up files are always stored in the $EAIWS/etc/startup directory. By default, the name of the

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 37 of 298

EAIWS 4.16

session start-up file is session.cfg. It can be changed using an option passed to the openSession oper-
ation of the SessionService (§5.4.3.2).

If a session start-up file is added to a running Online Configurator, then it is evaluated the next time an
openSession operation referencing this start-up file is executed.

If a session start-up file is modified while the Online Configurator is running, existing sessions will continue to
use the configuration specified by the old version of the start-up file, but otherwise the Online Configurator
behaves as if the start-up file has been newly added.

4.2.1 Allowed File Access

Synopsis: egr.eai.server.file_access=<path-list>

Default Value: not set

This option overrides the option of the same name from the server start-up file. If this option is set, the option
in the server start-up file is ignored by this session. If it is not set, the value of the server start-up file’s option
is used. For more information, see 4.1.8)

4.2.2 Unit Format Settings

Synopsis: egr.eai.gf.UnitFormatter.LengthUnit=<length-unit>
egr.eai.gf.UnitFormatter.LengthRepresentation=<unit-repr>
egr.eai.gf.UnitFormatter.LengthPrecision=<integer>
egr.eai.gf.UnitFormatter.LengthGrouping=<boolean>
egr.eai.gf.UnitFormatter.LengthUnitDisplayed=<boolean>
egr.eai.gf.UnitFormatter.LengthUpperCase=<boolean>
egr.eai.gf.UnitFormatter.AngleUnit=<angle-unit>
egr.eai.gf.UnitFormatter.AnglePrecision=<integer>
egr.eai.gf.UnitFormatter.AngleZeroDirection=<floating-point>
egr.eai.gf.UnitFormatter.MaxAngle=<floating-point>
egr.eai.gf.UnitFormatter.AngleUnitDisplayed=<boolean>
egr.eai.gf.UnitFormatter.AngleMathPositive=<boolean>
egr.eai.gf.UnitFormatter.AreaUnit=<area-unit>
egr.eai.gf.UnitFormatter.AreaRepresentation=<unit-repr>
egr.eai.gf.UnitFormatter.AreaPrecision=<integer>
egr.eai.gf.UnitFormatter.AreaGrouping=<boolean>
egr.eai.gf.UnitFormatter.AreaUnitDisplayed=<boolean>
egr.eai.gf.UnitFormatter.AreaUpperCase=<boolean>

<length-unit>: mm|cm|dm|m|in|ft|in_dq|ft_sq|architectural|yd
<angle-unit>: degrees|radians
<area-unit>: mm2|cm2|dm2|m2|sq_in|sq_ft|sq_yd
<unit-repr>: scientific|fixed|auto|fraction

'in_dq' stands for inch represented with double quotes. 'ft_sq' means feet represented as single quote and
'architectural' is the combination of 'ft_sq' and 'in_dq' with '-' as delimiter.

The length representation 'scientific' stands for floating-point numbers. 'fixed' represents fixed-point numbers.
'auto' shows the numbers depending on the value either as floating-point number or fixed-point number. 'frac-
tion' represents the number as fraction.
'LengthUnitDisplayed ' defines whether units should be displayed. 'LengthUpperCase' defines whether the
exponent should be represented with capital or small 'E' (only in case of 'scientific' or 'auto' with correspond-
ing value).

'AngleZeroDirection' defines the direction of the 0-degree-angle in radian measure. It is subtracted from an
absolute angle before formating. 'MaxAngle' defines the maximum angle in radian measure. After converting
the angle which should be displayed into]-2pi,+2pi[2pi is subtracted in case the angle is bigger as the max-
imum angle or 2pi is added in case the angle is negative and after adding 2pi smaller or equal the maximum
angle.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 38 of 298

EAIWS 4.16

4.2.3 Rounding in Basket Service

Synopsis: egr.eai.basket.BeginOfSwedishRounding=<swed-rnd-begin>
egr.eai.basket.RoundedDiscounts=<boolean>

<swed-rnd-begin>: <empty>
| None
| SingleSalesPrice
| TotalPositionNetPrice

<empty>:

XXX (not used yet)

4.2.4 Article Number Prefix for Conversion to User Article

Synopsis: egr.eai.basket.UserArticleNumberPrefix=<string>

Default Value: empty string

XXX (not used yet)

4.2.5 Color Space

Synopsis: egr.eai.gf.color_space=<LinearRGB|sRGB>

Default Value: LinearRGB

Defines the color space the OpenGL rendering should use. Can also be defined in the server start-up file,
whereas a specification in a session configuration file takes precedence of a specification in the server start-
up file.

4.2.6 Session Features

A session feature is an application feature that can be disabled by the session configuration.

Application features are defined in the application configuration file and are set to a license feature, true, or
false. An application feature is enabled if it is set to 'true' or if it is set to a license feature and the license
feature is enabled.

For a session feature to be enabled, it must be enabled as an application feature and it must not be dis-
abled by the session configuration file. It is disabled by the session configuration file if and only if the session
configuration file sets it to false.

A feature that is designated as a session feature may also be queried in a context where no session config-
uration is available, in which case it is treated like an ordinary application feature.

All application features are now treated as session features when they are used in a session-specific context.

Among possibly other uses, this change can be used to prevent the server to send any price data back to the
client by setting the following keys to 'false' in the session start-up file:

 egr.eai.basket.obx.ReadPriceData
 egr.eai.basket.PriceCalculation
 egr.eai.basket.obx.WritePriceData
 egr.eai.ws.basket.ReturnPriceInfo

4.2.7 Path Substitution

Synopsis: app.gf.data.path.substitution=<string>

Entries with this key may be used to substitute substrings of the values of the path and extpath keys in
package registration files. This key may be useful if an installation uses a mirrored/rsynced data directory

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 39 of 298

EAIWS 4.16

whose local path differs from the original path.

The value is similar to the argument of the s commands in sed(1) and vi(1). It must consist of delimiter, pat-
tern string, delimiter, replacement string, delimiter, and optional "i" flag.

The character used as delimiter is determined by the value's first non-whitespace character. The pattern
string is a Java regular expression (see http:// docs.oracle.com/javase/8/docs/api/java/util/regex/Pat-
tern.html).

The replacement string is the string used to replace all matching substrings of the values of the path and
extpath keys in package registration files. Note that backslash ('\') and dollar signs ('$') in the replacement
string are treated specially. A dollar sign may be treated as a reference to a captured subsequence, and a
backslash is used to escape the following character. Look for appendReplacement in http://docs.oracle.-
com/javase/8/docs/api/java/util/regex/Matcher.html for more information.

Note that the substitution is performed for the whole value of the path and extpath keys. This may make a
difference as EAIWS allows the specification of multiple paths separated by semicolon (or colon on Unix-like
operating systems). This should be kept in mind even if the installed data profiles contain only one path per
entry, because EAIWS merges data profiles pertaining to the same manufacturer or concern into a single
data profile to create a single catalog, if possible, and processes the merged data profile the same way as all
other data profiles.

Example:

 app.gf.data.path.substitution=,(^|[;:])/opt/pCon/_data/,$1/home/jpo/egr/data/,

4.2.8 Encoding

Synopsis: app.gf.data.default_encoding=<string>

Its value must be a character set name understood by Java. The default value is 'windows-1252' (a superset
of ISO-8859-1 with graphical characters in the C1 range).

4.2.9 Property References

Property references consist of a previously defined property name enclosed in ${ and }. The property name
must consist of a non-empty sequence of alphanumeric US-ASCII characters, underline (_) and/or period
(.).

Property values that do not contain ${ are left unmodified. Property values that do contain ${ are processed
as follows:

• ${ must start a valid property reference or processing of the start-up file will fail. There must be a
previous definition of the referenced property in the same start-up file. The whole property reference
is replaced by the referenced properties current value.

• $$ is substituted by a single $, which will not be considered as a leading dollar sign in ${ or $$.

• Any other dollar sign is left unchanged.

One possible use of property references is easy switching between multiple copies of mirrored user applica-
tion (e.g. pCon.box) data sets. The relevant part of the start-up file may look as follows:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 40 of 298

EAIWS 4.16

.data=/home/data/ofml
#.data=/home/data/ofml/.zfs/snapshot/2017-10-07

app.gf.data.profile.registration=${.data}/pCon.box/catalogs/default.profil
es
app.gf.data.profile.path=${.data}/pCon.box/catalogs/profiles
app.gf.data.path.substitution=,(^|[;:])/opt/pCon/_data/,1{.data}/,

4.2.10 Session Startup Modification Time

Synopsis: egr.eai.ws.session.startup.modified_time

Default value: the time the session start-up file has last been modified at the time it was read

This property is read-only. The value of this property is an ISO instant in UTC, such as 2011-12-
03T10:15:30Z.

The property may be explicitly specified in a session start-up file, overriding its default value, although there
is probably not much use in doing so.

4.2.11 Currencies

Synopsis: app.basket.currencies

Default value: currencies

The default value is the base name of the currency configuration file, without suffix .cfg, located in directory
etc/.

The value of this property must be an URI-reference. If this reference is relative (i.e. does not contain a
scheme) and consists of a single path segment that does not contain a period then .cfg is appended to the
reference. Relative references are then resolved against the URI representing the etc/ directory.

The URI is then matched against the pattern returned by method getSourceURIPattern() of currency provider
factories to select the factory used to produce a currency provider.

To use a Fixer-compatible currency provider (see https://fixer.io), the session start-up file property
app.basket.currencies must be set to the request URL used to access the Fixer-compatible web
service. The following restrictions apply:

• The path of the request URL must end with either /latest or with a slash followed by an ISOdate.

• The query component may contain only the following parameters:

access_key

the access key; required with data.fixer.io, but not necessarily required by alternative
implementations of the service

base

the base/reference currency; The default value is EUR. Note that this is also the only base
currency supported by the free pricing plan of the fixer.io service.

symbols

a comma-separated list of currency codes used to restrict the set of conversion rates
provided by the web service; Without this parameter the fixer.io service returns about 170
conversion rates, and the exchangeratesapi.io service (see below) returns about 30
conversion rates.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 41 of 298

EAIWS 4.16

Example: http://data.fixer.io/api/latest?access_key=<access-key>

If the request path ends with /latest then the provider’s conversion rates are regularly updated a quarter
past every full hour. This results in about 700 to 750 updates per month which is within the limit of the
maximum number of monthly requests allowed by the free pricing plan of the fixer.io service as long as the
access key is used by only one instance of EAIWS.

Responses from successful requests are cached in var/ebasket/currency/fixer/cache using a
digest computed from the request URL as key (file name). The cache is used when the provider is first
accessed after an EAIWS (re)start. If a matching entry is found then the behavior is as follows:

• If the request path ends with an ISO date then the cached data is used.

• If the request path ends with /latest then the connect and read timeouts for the request are both
reduced to 5 seconds (instead of the default 30 seconds) and the cached data is used if the request
does not produce a valid result (due to timeout or some other error).

To use this provider with other Fixer-compatible web service implementations they must be registered using
application start-up property egr.eai.basket.currency.fixer.api_base. For instance, to use the
open source Foreign exchange rates API that provides exchange rates published by the European Central
Bank, the server start-up file should contain one or both of the following entries:

egr.eai.basket.currency.fixer.api_base=http://api.exchangeratesapi.io/

egr.eai.basket.currency.fixer.api_base=https://api.exchangeratesapi.io/

Then, the application or session start-up file property app.basket.currencies can be set to something
like

https://api.exchangeratesapi.io/2019-03-18?base=USD&symbols=EUR,USD,RUB

The example references a currency provider that uses USD as base currency and provides the conversion
rates for EUR, USD and RUB as published by the EZB for Mach 18, 2019.

4.2.12 Timeout for Sessions

Synopsis: egr.eai.server.session_timeout=<timeout-in-seconds>

Default Value: 300

The value of this option specifies the number of seconds of inactivity the Online Configurator waits until it
automatically closes the session and eventually deletes session specific data from disk (see also $4.1.7).

In addition to the timeout in seconds, the properties can be set to a duration similar to ISO 8601 (see
https://en.wikipedia.org/wiki/ISO_8601#Durations), with the difference that 'Y' (year), 'M' (month) and 'W'
(week) are not supported, nor are the basic and extended formats PYYYYMMDDThhmmss and P[YYYY]-
[MM]-[DD]T[hh]:[mm]:[ss].

4.2.13 Session Suspend

Synopsis: egr.eai.server.session_suspend_timeout=<timeout-in-seconds>

The value of this option specifies the number of seconds of inactivity the Online Configurator waits until it
automatically moves the session specific data from RAM to disk. For session suspend to work, this property
must be set to a value less than the session timeout.

In addition to the timeout in seconds, the properties can be set to a duration similar to ISO 8601 (see
https://en.wikipedia.org/wiki/ISO_8601#Durations), with the difference that 'Y' (year), 'M' (month) and 'W'
(week) are not supported, nor are the basic and extended formats PYYYYMMDDThhmmss and P[YYYY]-
[MM]-[DD]T[hh]:[mm]:[ss].

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 42 of 298

EAIWS 4.16

4.2.14 FAPI-shell Command Timeout

Synopsis: egr.eai.gf.cmd_timeout=<timeout-in-seconds>

Default Value: 0

Optional entry, egr.eai.gf.cmd_timeout. Again, the value must be a non-negative integer less than
2^31. It represents the actual timeout in seconds.

A value of zero (the default value) means 'no timeout'. However, if a maximum timeout is configured in the
server startup file, that maximum timeout is used instead.

If the timeout is greater than the maximum timeout, the maximum timeout is used. Similarly, if the timeout is
less than the minimum timeout, the minimum timeout is used.

The value of egr.eai.gf.cmd_timeout from the session startup file may be overridden by a property
with the same name returned by ISessionManagerListener.getStartupProperties().

4.2.15 Default image options (session start-up file)

Synopsis:

egr.eai.server.export.default_image_options=<key/value list>

Default Value: empty

Added support for session startup option
egr.eai.server.export.default_image_options=<key/value list> It can be specified, with
decreasing priority, as part of the options returned by ISessionManagerListener.getStartupProperties(), in the
session startup file, or in the server startup file. A higher priority startup option value, even if empty,
completely replaces a lower priority value.

The startup option value is decomposed into a possibly empty list of strings representing image export
options as accepted by operation getGeneratedImage. Individual options are US-ASCII whitespace
separated quoted strings or key/value pairs. In case of key/value pairs, key and value must be separated by
a single equal sign (U+003D). Keys start with an optional dollar sign (U+0024) followed by a sequence of
one or more identifiers separated by a single full stop / period (U+002E). Values are either a quoted string or
a possibly empty sequence of non-whitespace characters. Key and value (decoded in case of a quoted
string) are concatenated, separated by a single equal sign, before appended to the list of image export
options.

Identifiers and quoted strings must adhere to ISO C89 rules.

The list of image export options is then validated the same way as done by operation getGeneratedImage.

If the startup option value does not conform to the rules described above, or the resulting list of image export
options contains an invalid option, the openSession operation fails.

4.3 Command Line Options

In general, the Online Configurator is started as

$ java $JVM_OPTIONS -jar $EAI_SERVER_JAR $OPTIONS

where $JVM_OPTIONS are options passed to the Java Virtual Machine, $EAI_SERVER_JAR is the absolute
or relative path to EAI-Server.jar, and $OPTIONS are options passed to the Online Configurator.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 43 of 298

EAIWS 4.16

4.3.1 JVM Options

4.3.1.1 Application Root Directory

Synopsis: -Degr.eai.fw.cmdline.AppRootDir=<EAIWS-dir>

Default Value: current working directory

This option must be used if the installation directory of the Online Configurator (the $EAIWS directory) is not
the current working directory when the Online Configurator is started. Otherwise the Online Configurator will
not be able to find it’s configuration files.

4.3.2 Online Configurator Options

4.3.2.1 Server Start-Up File

Synopsis: -startup <startup-file-name>

Default Value: server

This option is used to specify the base name of the server start-up file. If specified the Online Configurator
uses $EAIWS/etc/startup/<startup-file-name>.cfg as the path of the server start-up file.

4.3.2.2 Destination of Log Messages

Synopsis: -log <destination>

<destination> is any non-empty sequence of file and cons, separated by comma

Default Value: file

This option controls where log messages are written to. If file is specified, log messages are written to a
log file that can be found in the $EAIWS/var/log directory. If cons is specified, log messages are written to
the console. If both are specified, log messages are written both to the log file and the console.

4.4 Configuration files

4.4.1 Media Types

The configuration file named 'mime.types' is located in etc/ directory of application. Each non-comment line
(starting with '#') consists of a MIME/Media type followed by space and a non-empty space-separated case
sensitive list of file extensions (without the period ('.') separating base name and extension).

Right now, this file defines media types for OBK and OBX files.

Version 4.7: Added etc/mime.types with pdf suffix mapped to application/pdf.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 44 of 298

EAIWS 4.16

5 Web Service Interfaces

The EasternGraphics Online Configurator exposes it’s functionality as a set of three web services accessible
through the SOAP web service protocol:

Session Service: The sole purpose of the session service is to open and close user sessions.

Catalog Service: The catalog service is used to access the XCF catalogs of registered product data.

Basket Service: The basket service is used to create and modify a hierarchical structure of folders and art-
icle positions and to allow the configuration of article positions.

Project Service: The project service is used to handle project based header information like addresses.

The WSDL files that describe the SOAP protocol used to access the services of the Online Configurator can
be downloaded from http://<host>:<port>/EAI/<service>?wsdl, where <host> is the name or IP
address of the host the Online Configurator is running on, <port> is the configured HTTP port number of the
Online Configurator, and <service> must be replaced by either Session, Catalog, Basket or
Project.

A single instance of the Online Configurator is prepared to process a certain number of web service opera-
tions in parallel. Right now this number is hard-coded to 20 parallel operations. This limit is more or less in-
dependent from the maximum allowed number of configured and licensed operations per minute, as the
mechanism used to throttle the throughput allows the accumulation of tickets in periods of inactivity, which
can then be used for a short time to service requests at a much higher rate than suggested by the throughput
limit.

Operations that work on a single session, however, are always serialized by the Online Configurator.

5.1 Web Service Definition Syntax

Few developers will implement their clients solely by reading the WSDL files and referenced XSD files. In-
stead, they will use tools to generate the client side stubs used to call web service operations. Furthermore,
there is no rule to prevent future versions of the Online Configurator from using different web service proto-
cols like JSON-RPC. For these reasons the specifications of the Online Configurator web service operations
merely define the semantics of the operations and use a syntax that is agnostic about the web service pro-
tocol and client implementation.

The grammar used in the following sub-sections uses the same EBNF notation as is used in Extensible
Markup Language (XML) 1.0 (Fifth Edition).

5.1.1 Types

Synopsis: Type ::= NamedType
| ConstructedType

NamedType ::= PrimitiveType
| DefinedType

5.1.1.1 Primitive Types

Synopsis: PrimitiveType ::= 'boolean' §5.1.1.1.1
| 'int' §5.1.1.1.2
| 'string' §5.1.1.1.3
| 'decimal'

Entities of primitive types always hold an value of the type. They are never null, even if the language binding
uses reference types.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 45 of 298

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/

EAIWS 4.16

5.1.1.1.1 Boolean Type

Synopsis: PrimitiveType ::= 'boolean'

XSD: type="xs:boolean"

Entities of type boolean can assume the values true and false.

5.1.1.1.2 Integer Type

Synopsis: PrimitiveType ::= 'int'

XSD: type="xs:int"

Entities of type int can assume any integral value between -2147483648 and 2147483647, inclusive.

5.1.1.1.3 String Type

Synopsis: PrimitiveType ::= 'string'

XSD: type="xs:string"

Entities of type string consist of a possibly empty sequence of Unicode characters.

5.1.1.1.4 Decimal Type

Synopsis: PrimitiveType ::= 'decimal'

XSD: type="xs:decimal"

The type decimal represents the subset of real numbers that can be expressed by an optional plus (+) or
minus (-) sign and two non-empty sequences of decimal digits (0 through 9), delimited by the decimal point
(.), where the total number of significant digits must not be greater than 1815. Significant digits are all digits
except leading zero left of the decimal point and trailing zero right of the decimal point.

5.1.1.2 Defined Types

Synopsis: DefinedType ::= EnumerationType §5.1.1.2.1
| StructureType §5.1.1.2.2
| AliasType §5.1.1.2.3

5.1.1.2.1 Enumeration Type

Synopsis: EnumerationType ::= EnumTypeName

XSD: type="<enumTypeName>"

Entities of enumeration types always hold an value of the type. They are never null, even if the language
binding uses a reference type to represent enumerations.

See §5.1.2.1 for how to define a new EnumTypeType.

5.1.1.2.2 Structure Type

Synopsis: StructureType ::= StructTypeName

XSD: type="<structTypeName>"

Entities of structure types always hold an instance of the type. They are never null, even if the language
binding uses reference types to implement structure types.

15 This limitation is imposed by XSD for minimally conforming processors.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 46 of 298

EAIWS 4.16

See §5.1.2.2 for how to define a new StructTypeName.

5.1.1.2.3 Alias Type

Synopsis: AliasType ::= AliasTypeName

XSD: In XSD, alias type names are replaced by their original type names, recursively if necessary.

See §5.1.2.3 for how to define a new AliasTypeName.

5.1.1.3 Constructed Types

Synopsis: ConstructedType ::= NillableType
| SequenceType
| NillableValueSequenceType

5.1.1.3.1 Nillable Type

Synopsis: NillableType ::= NamedType '*'

XSD: <xs:element ... type="<type>" minOccurs="0"/>

Entities of nillable types can hold a null value in addition to the values allowed by the underlying type.

In XSD, nillable types are implemented with minOccurs="0" instead of nillable="true" as this is
more efficient, unless the nillable type is the element type of a sequence type. If the nillable type is the ele-
ment type of a sequence type, nillable="true" must be used as minOccurs and maxOccurs are used
to identify the element as a sequence.

5.1.1.3.2 Sequence Type

Synopsis: SequenceType ::= NamedType '[' ']'
| NillableType '[' ']'

XSD: <xs:element ... type="<type>" minOccurs="0" maxOccurs="unbounded"/>

XSD: <xs:element ...
 type="<type>"
 nillable="true"
 minOccurs="0"
 maxOccurs="unbounded"/>

5.1.2 Type Definitions

Synopsis: TypeDefinition ::= EnumTypeDefinition
| StructTypeDefinition
| AliasTypeDefinition

5.1.2.1 Enumeration Type Definitions

Synopsis: EnumTypeDefinition ::= 'enum' Name '{' Enumerator (',' Enumerator)* '}'

Enumerator ::= Name

XSD: <xs:simpleType name="<enumTypeName>">
<xs:restriction base="xs:string">
<xs:enumeration value="<Enumerator>"></xs:enumeration>
...
</xs:restriction>
</xs:simpleType>

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 47 of 298

EAIWS 4.16

The enumeration type definition defines Name as a new EnumTypeName (§5.1.1.2.1).

5.1.2.2 Structure Type Definitions

Synopsis: StructTypeDefinition ::= 'struct' Name '{' (Declaration ';')* '}'

XSD: <xs:complexType name="<structTypeName>" final="extension restriction">

<xs:sequence>
<xs:element name="<fieldName>" ... />
...
</xs:sequence>
</xs:complexType>

The structure type definition defines Name as a new StructTypeName (§5.1.1.2.2).

5.1.2.3 Alias Type Definitions

Synopsis: AliasTypeDefinition ::= 'typedef' Type Name ';'

XSD: In XSD, all alias types are replaced by the original types, recursively if necessary.

The alias type definition defines Name as a new AliasTypeName (§5.1.1.2.3).

5.1.3 Declarations

Synopsis: Declaration ::= Type Name

XSD: <xs:element name="<name>" type="<type>" ... />

If Type is a constructed type, the attributes minOccurs="0", maxOccurs="unlimited" and
nillable="true" may be added as described in §5.1.1.3. Otherwise, they keep their default
values of 1, 1 and false.

A declaration declares a new entity (structure field, operation argument) with the given type and name.

5.1.4 Operations

Synopsis: Operation ::= ResultType OperationName '(' ArgumentList? ')'
 ThrowsClause? ';'

ResultType ::= Type
| 'void'

OperationName ::= Name

ArgumentList ::= Argument (',' Argument)*

Argument ::= Declaration

5.1.5 Names

Synopsis: Name ::= NameStartChar NameChar*

NameStartChar ::= Letter | '_'

NameChar ::= NameStartChar | Digit

Letter ::= [A-Z] | [a-z]

Digit ::= [0-9]

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 48 of 298

EAIWS 4.16

Boolean Values

Synopsis: boolean

Entities of type boolean can assume the values true and false.

5.1.5.1 Integers

Synopsis: int

Entities of type int can assume any integral value between -2147483648 and 2147483647, inclusive.

Boolean Values

Synopsis: boolean

Entities of type boolean can assume the values true and false.

5.1.5.2 Integers

Synopsis: int

Entities of type int can assume any integral value between -2147483648 and 2147483647, inclusive.

Strings

Synopsis: string

Entities of type string consist of a possibly empty sequence of Unicode characters.

5.2 Common Type Definitions

5.2.1 UUID

Synopsis:

typedef string UUID;

An Universally Unique Identifier (UUID) is a 128-bit number that is meant to uniquely identify a resource over
time and space16 without the need for central coordination in the generation of UUIDs.

The Online Configurator web service interfaces use strings to represent UUIDs. For this purpose UUIDs are
formatted as 32 hexadecimal digits (using lower case letters), separated by hyphens (-) into five groups of 8,
4, 4, 4, and 12 digits.

In some contexts, a special null-UUID is required to indicate special semantics. Because the Online Config-
urator web service interfaces prohibit the use of null for entities of type string, either the empty string
("") or the string "00000000-0000-0000-0000-000000000000" may be used as a null-UUID. The On-
line Configurator always uses the second form for null-UUIDs returned by web service operations.

5.2.2 URL

Synopsis:

typedef string URL;

Entities of the URL type are either a HTTP URL or an empty string. The host and port of the URL refer to the

16 In theory, due to the limited value range of about 3 x 1038, it could happen that the same UUID is accidentally used to identify different
resources. In practice, however, this is quite unlikely and, given a reasonable generator for UUIDs, one can assume that one such
identifier will never be unintentionally used for another resource.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 49 of 298

EAIWS 4.16

same host and port as used to access the Online Configurator web services.

5.3 Application-Specific Data

The client is able to attach application-specific data to the project, the basket, and individual basket items.
This data is written to and read from project files by the saveSession (§5.4.3.14) and loadSession
(§5.4.3.15) operations of the SessionService. The operations used to access this data are:

• setProjectAppData (§5.4.3.18) and getProjectAppData (§5.4.3.19) of the SessionService
for data attached to the project. This data is written to the metainf.xml project file member as child
elements of the <appData> element.

• setBasketAppData (§5.6.3.46) and getBasketAppData (§5.6.3.47) of the BasketService for
data attached to the basket. This data is written to the 1.bsk project file member as child elements
of the <appData> element that is a child of the <basket> element.

• setItemAppData (§5.6.3.48) and getItemAppData (§5.6.3.49) of the BasketService for data
attached to individual items. This data is written to the 1.bsk project file member as child elements
of the <appData> element that is a child of the element representing the basket item. It is also part
of the OBX stream that is used for cut/copy/paste and may be used by some export routines export-
ing commercial data (§5.6.3.43, GFX export).

All operations that access application data have an argument of type string named appKey. This argu-
ment is intended to identify the application managing this particular kind of data. For each application key,
the Online Configurator uses an <application> element as child of the <appData> element, with an at-
tribute named key whose value is the specified application key. The <application> elements are created
by operations that set the application data. Operations that get the application data do not create this (or any
other) element.

5.3.1 Setting Application Data

The operations that set application data take an argument named data of type string[]. Each element of
this sequence of strings must consist of a location path and the value to set, separated by an equal sign
('='). The value consists of all characters right of the equal sign, including any leading or trailing white
space. The operation fails if one of the elements of data does not contain an equal sign separating the loca-
tion path and the value, or if the location path does not adhere to the syntax for location paths specified be-
low (§5.3.3.1). If the operation fails at this point, no application data has been modified.

Once data has been successfully validated, the operation evaluates each location path. If the location path
references an XML element, all children of the element are removed, and if the new value is not an empty
string, replaced by a single Text node containing the value. If the location path references an XML attribute,
the value of this attribute is set to the new value.

If the location path does not reference an existing node, evaluation of the location path creates new nodes as
required so evaluation of the location path always produces at least one node. Therefore, once the elements
of data have been successfully validated, the operations setting application data should not fail. Thus, the
operations setting application data are atomic, setting either all referenced nodes to their new values, or
none.

5.3.2 Getting Application Data

The operations that get application data take an argument named paths of type string[]. The return
value is of type string*[]. The return value has always as many elements as the argument paths.

Each element of paths must consist of a single location path that adheres to the syntax for location paths as
specified below (§5.3.3.1), or the operation will fail. Once all location paths have been validated, each loca-
tion path is evaluated. If evaluation produces an empty node set, the corresponding element in the return
value is set to null. Otherwise, the first node in document order from the node set is chosen and its string
value is assigned to the corresponding element in the return value. The string value of an XML element node

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 50 of 298

EAIWS 4.16

consists of the concatenation of all Text and CDATASection descendant nodes in document order. The string
value of an XML attribute node consists of the attribute’s value.

5.3.3 Location Paths

5.3.3.1 Syntax of Location Paths

Location paths supported by the operations that set and get application data are a very limited declarative17

subset of XPath location paths. They must adhere to the following grammar:

LocationPath ::= ElementTest ('/' ElementTest)* ('/' AttributeTest)?

ElementTest ::= NCName Predicate?

AttributeTest ::= AttributeRef

Predicate ::= '[' PredicateExpr ']'

PredicateExpr ::= AndExpr

AndExpr ::= EqualityExpr ('and' EqualityExpr)*

EqualityExpr ::= FunctionCall
| AttributeRef '=' PrimaryExpr

FunctionCall ::= 'not' '(' AttributeRef ')'

AttributeRef ::= '@' NCName

PrimaryExpr ::= Literal
| Number

NCName ::= NCNameStartChar NCNameChar*

NCNameStartChar ::= [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] |
[#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D] |
[#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] |
[#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

NCNameChar ::= NameStartChar
| "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] | [#x203F-#x2040]

Literal ::= '"' [^"']* '"'
| ''' [^']* '''

Number ::= [+-]? Digits ('.' Digits?)?
| [+-]? '.' Digits

Digits ::= [0-9]+

Whithin literals, the delimiting character (QUOTATION MARK or APOSTROPHE) and AMPERSAND (&) must
be represented by character references. The value of a numeric character reference must represent the
code point of a valid XML character.

CharacterReference ::= NumericCharacterReference
| '&' | '"' | ''' | '<' | '>'

NumericCharacterReference ::=
'&' [0-9]+ ';'

| '&x' [0-9A-Fa-f]+ ';'

17 Location paths used by the operations that set and get application data are declarative because each step of the location path can
not only be used to match against existing nodes, but must also declare how to insert a new node if no match is found (operations
that set application data must be able to create nodes). In XPath, a relative location path consisting of a single step may look like
Foo[@bar!='abc']. If this syntax would be supported by operations that set application data, and the application data does not
contain a matching node, the operation would have to create a new node, but would not know which value to use for the attribute
'bar', or whether to add this attribute at all. On the other hand, if the location path is Foo[@bar='abc' and not(@baz)], and
the operation does not find a matching node, it knows to create an element named <Foo> with an attribute 'bar' whose value is
'abc' and without an attribute 'baz'.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 51 of 298

EAIWS 4.16

XMLCharacter ::= #09 | #0A | #0D | [#0020-#D7FF] | [#E000-#FFFD]
| [#10000-#10FFFF]

White space (SPACE, CHARACTER TABULATION, LINE FEED and CARRIAGE RETURN) is allowed
between individual grammar symbols except within the productions of NCName, Literal, Number and Numer-
icCharacterReference.

WhiteSpace ::= #x20 | #x09 | #x0A | #x0D

5.3.3.2 Evaluation of Location Paths

Location paths are split into a sequence of n individual node tests (ElementTest, AttributeTest). Each node
test has a set of input nodes and a set of output nodes. The output nodes of node test n become the input
nodes of node test n+1. The input set of the first node tests consists of the <application> element selec-
ted by the application key. The output set of the last node test represents the result of the location path’s
evaluation.

The output set of an element test consists of the immediate child nodes of all nodes from the input set for
which the following conditions are true:

• The node is an element node.
• The tag name of the element is equal to the name specified by the node test.
• If the element test contains a predicate, the predicate expression is true.

Predicate expressions are used to test attributes of the (element) node for their value. They contain one or
more equality expressions separated by the token and. An equality expression may have one of three forms:

@<NCName>=<Number>

This expression is true if and only if the currently tested node has an attribute named <NCName>
whose value can be converted into a number, and the resulting number has the same value as
<Number>. The conversion of the attribute value to a number accepts at least the same character
sequences as the rule for Number in the grammar above.

@<NCName>=<Literal>

This expression is true if and only if the currently tested node has an attribute named <NCName>
whose value contains the same sequence of Unicode code points as <Literal>.

not(@<NCName>)

This expression is true if and only if the currently tested node does not have an attribute named
<NCName>.

The output set of an attribute tests consists of the immediate child nodes of all nodes from the input set for
which the following conditions are true:

• The node is an attribute node.
• The name of the attribute is equal to the name specified by the node test.

If the operation sets application data, and the output set of a node test is empty, the node test creates a new
node that matches the node test and appends it to the input set’s first node (in document order). The output
set then contains the newly created node.

5.4 Session Service

5.4.1 Type Definitions

5.4.1.1 SessionId

Synopsis:

typedef UUID SessionId;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 52 of 298

EAIWS 4.16

Session IDs are generated by the openSession operation to uniquely identify the newly opened session.
They remain valid until the session has been explicitly closed or has timed out.

5.4.1.2 StringPair

Synopsis:

struct StringPair {
 string first;
 string second;
}

Instances of type StringPair are used to specify option arguments of the openSession operation. The
value of first, which must start with a hyphen (-), indicates the option. The value of second is the actual
value of the option. If the option has no value, then second must be the empty string ("").

5.4.1.3 ProjectData

Synopsis:

struct ProjectData {
 string* number;
 string* name;
 string* description;
 string* personInCharge;
 string* extRefNr;
 string* extRefText;
}

5.4.1.4 ClientMessage

Synopsis:

final struct ClientMessage{
 string target;
 string messageId;
 StringPair[] data;

}

 target

Identifies the target of the message. It consists of a prefix and a prefix-specific string. As of now, the prefix
must be plugin: and the substring following the prefix must be empty or equal to a plugin ID.

 messageId

identifies the message. It must adhere to the rules for QName as specified in Namespaces in XML 1.1,
Second Edition). For plugin-specific messages it should be just a NCName.

 data

Is the payload of the message, a possibly empty list of key/value pairs. Keys must adhere to the rules for
NCName.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 53 of 298

EAIWS 4.16

5.4.1.5 CustomerData

Synopsis:

struct CustomerData {
 string* customerNumber;
 string* salutation;
 string* firstName;
 string* lastName;
 string* emailAddr;
 string* company;
 string* organization;
 string* streetAddr;
 string* city;
 string* stateOrProvince;
 string* cityCode;
 string* poBox;
 string* postalCode;
 string* poBoxPostalCode;
 string* country;
 string* language;
 string* phone;
 string* fax;
}

The format of postalCode and poBoxPostalCode follows the OEX (OFML Business Data Exchange)
Global specification:

Maximum Length: 10 characters

Allowed Characters: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ space and – within. Whereas it
is not permitted for several spaces/hyphens to follow one another.

5.4.1.6 ProjectSettings

Synopsis:

struct ProjectSettings {
 ProjectData* projectData;
 CustomerData* customerData;
}

The ProjectSettings structure corresponds to the <settings> element within the metainf.xml file of
pCon.basket project (OBK) files. It is used as result type of the getProjectSettings (§5.4.3.17) and ar-
gument type of the setProjectSettings (§5.4.3.16) operations of the SessionService.

5.4.1.7 SendMessageStatus

Synopsis:

enum SendMessageStatus{
 OK,
 UnexpectedError,
 UnknownTargetType,
 UnknownPlugin,
 NoPluginImplementation,
 NoMessageHandler,
 UnknownMessageId,
 InvalidMessageData

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 54 of 298

EAIWS 4.16

5.4.1.8 SessionCacheFileType

Synopsis:

enum SessionCacheFileType {
 Project,
 CutBuffer,
 Import
}

Defines the valid session cache file types. Is used for example by operation getUploadURL. Project files
have the suffix .obk and CutBuffer files end with.obx.

The enumeration value Import should be used with operation getUploadURL to get an URL that can be
used with HTTP PUT to upload a file that can later be imported into the session with operation importFile
(§5.4.3.21).

5.4.1.9 ImportFileOptions

Synopsis:

struct ImportFileOptions {boolean deleteAfterImport}

The complex type ImportFileOptions contains optional elements representing options that control the
behavior of the importFile (§5.4.3.21) operation. Right now, there is only one option of type boolean with
name deleteAfterImport. If set to true, the importFile operation deletes the file after a successful import.

5.4.1.10 SaveSessionOptions

Synopsis:

struct SaveSessionOptions {
 string* suffix;
 boolean* overwrite;
 boolean generateImages,
 boolean omitPriceData,
 boolean* saveCalculations;
 boolean* saveLegacyCalculation;
 string* legacyCalculationName;
 boolean export
}

The complex type SaveSessionOptions contains optional elements representing options that control the
behavior of the saveSession (§5.4.3.14) operation.

If the suffix option is not specified, the operation uses “.obk” as the suffix of the project file. If the client
sets the suffix option to an empty string, then no suffix is appended to the project file name. Otherwise, the
Online Configurator checks whether the suffix starts with a dot, prepending one if it does not, and appends
the resulting suffix to the project file name.

The optional element saveCalculations controls whether or not (normal) calculation data is saved. De-
fault value is true.

The optional element saveLegacyCalculation controls whether or not legacy calculation data (used by
pCon.basket) is saved. Default value is false. The optional element legacyCalculationName explicitly
specifies the pricing procedure name of the calculation to use for legacy calculation data. Default value is the
empty string. Ignored if saveLegacyCalculation is false.

If access to the file is allowed, and the file already exists, the operation fails unless the overwrite option
has been set to true.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 55 of 298

EAIWS 4.16

export: prevents, when set to true, the project's URI set to be updated to reflect the location where the project
has been saved to. (The default value of this option is false.)

5.4.1.11 OperatingSystemInformation

Synopsis:

struct OperatingSystemInformation {
 string name;
 string architecture;
 string version;
 int availableProcessors;
 double systemLoadAverage;
}

name (element)

the operating system name

architecture (attribute)

the operating system architecture

version (attribute)

the operating system version

availableProcessors (attribute)

the number of processors available to the Java virtual machine

This value may change between subsequent invocations of the getSystemInformation
(§5.4.3.23) operation for the same instance of the Online Configurator.

systemLoadAverage (attribute)

the system load average for the last minute; The system load average is the sum of the number of
runnable entities queued to the available processors and the number of runnable entities running on
the available processors averaged over a period of time. The way in which the load average is calcu-
lated is operating system specific but is typically a damped time-dependent average.

If the load average is not available, a negative value is returned.

5.4.1.12 RuntimeInformation

Synopsis:

struct RuntimeInformation {
 string name;
 string vmName;
 string vmVendor;
 string vmVersion;
 string specName;
 string specVendor;
 string specVersion;
 long uptime;
 long startTime;
 string compilerName;
 long totalCompilationTime;
 long loadedClassCount;
 long totalLoadedClassCount;
 long unloadedClassCount;
}

name (element)

the name representing the running Java virtual machine; The returned name string can be any arbit-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 56 of 298

EAIWS 4.16

rary string and a Java virtual machine implementation can choose to embed platform-specific useful
information in the returned name string. Each running virtual machine could have a different name.

vmName (element)

the Java virtual machine implementation name

vmVendor (element)

the Java virtual machine implementation vendor

vmVersion (attribute)

the Java virtual machine implementation version

specName (element)

the Java virtual machine specification name

specVendor (element)

the Java virtual machine specification vendor

specVersion (attribute)

the Java virtual machine specification version

uptime (attribute)

the uptime of the Java virtual machine in milliseconds

startTime (attribute)

the start time of the Java virtual machine in milliseconds; This method returns the approximate time
when the Java virtual machine started.

compilerName (element)

the name of the Just-in-time (JIT) compiler

totalCompilationTime (attribute)

the approximate accumulated elapsed time (in milliseconds) spent in compilation; If multiple threads
are used for compilation, this value is summation of the approximate time that each thread spent in
compilation.

loadedClassCount (attribute)

the number of classes that are currently loaded in the Java virtual machine

totalLoadedClassCount (attribute)

the total number of classes that have been loaded since the Java virtual machine has started execu-
tion

unloadedClassCount (attribute)

the total number of classes unloaded since the Java virtual machine has started execution

5.4.1.13 MemoryUsage

Synopsis:

struct MemoryUsage {
 long init;
 long used;
 long committed;
 long max;
}

init (attribute)

the amount of memory in bytes that the Java virtual machine initially requests from the operating
system for memory management; This value is -1 if the initial memory size is undefined.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 57 of 298

EAIWS 4.16

used (attribute)

the amount of used memory in bytes

committed (attribute)

the amount of memory in bytes that is committed for the Java virtual machine to use; This amount of
memory is guaranteed for the Java virtual machine to use.

max (attribute)

the maximum amount of memory in bytes that can be used for memory management; This value is -
1 if the maximum memory size is undefined.

This amount of memory is not guaranteed to be available for memory management if it is greater
than the amount of committed memory. The Java virtual machine may fail to allocate memory even if
the amount of used memory does not exceed this maximum size.

5.4.1.14 GarbageCollectorInformation

Synopsis:

struct GarbageCollectorInformation {
 string name;
 long collectionCount;
 long collectionTime;
}

name (element)

the name representing this garbage collector

collectionCount (attribute)

the total number of collections that have occurred; This value is -1 if the collection count is undefined
for this collector.

collectionTime (attribute)

the approximate accumulated collection elapsed time in milliseconds; This value is -1 if the collection
elapsed time is undefined for this collector.

The Java virtual machine implementation may use a high resolution timer to measure the elapsed
time. This method may return the same value even if the collection count has been incremented if
the collection elapsed time is very short.

5.4.1.15 MemoryInformation

Synopsis:

struct MemoryInformation {
 int objectPendingFinalizationCount;
 MemoryUsage heap;
 MemoryUsage nonHeap;
 GarbageCollectorInformation[] collectors;
}

objectPendingFinalizationCount (attribute)

the approximate number of objects for which finalization is pending

heap (element)

the current memory usage of the heap that is used for object allocation. The heap consists of one or
more memory pools. The used and committed size of the returned memory usage is the sum of
those values of all heap memory pools whereas the init and max size of the returned memory usage
represents the setting of the heap memory which may not be the sum of those of all heap memory
pools.

The amount of used memory in the returned memory usage is the amount of memory occupied by

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 58 of 298

EAIWS 4.16

both live objects and garbage objects that have not been collected, if any.

nonHeap (element)

the current memory usage of non-heap memory that is used by the Java virtual machine; The non-
heap memory consists of one or more memory pools. The used and committed size of the returned
memory usage is the sum of those values of all non-heap memory pools whereas the init and max
size of the returned memory usage represents the setting of the non-heap memory which may not be
the sum of those of all non-heap memory pools.

collectors (element)

information about one or more garbage collectors used by the Java virtual machine.

The number of collectors may change between subsequent invocations of
thegetSystemInformation (§5.4.3.23) operation for the same instance of the Online Configur-
ator.

5.4.1.16 ApplicationInformation

Synopsis:

struct ApplicationInformation {
 string appName;
 string appKey;
 string appVersion;
 string vendorKey;
}

appName (element)

the display name of the application, or the application key if no display name is available

appKey (attribute)

symbolic identifier for the application

appVersion (attribute)

the version number of the application; The returned version number adheres to the following BNF
grammar:

 version_number = major
 | major "." minor
 | major "." minor "." micro
 | major "." minor "final"
 | major "." minor level micro

 major = 1*digit

 minor = 1*digit

 micro = 1*digit

 level = "alpha" | "beta" | "rc"

 digit = "0" | "1" | "2" | "3" | "4"

 | "5" | "6" | "7" | "8" | "9"

vendorKey (attribute)

symbolic identifier for the vendor distributing the application

5.4.1.17 SendMessageResult

Synopsis:

final struct SendMessageResult{
 boolean sessionAlive;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 59 of 298

EAIWS 4.16

 ServerResponse[] messages;
}

5.4.1.18 ServerInformation

Synopsis:

struct ServerInformation {
 int maxConcurrentSessionCount;
 int openSessionCount;
 int activeSessionCount;
 long sessionTimeout;
 long sessionSuspendTimeout;
}

maxConcurrentSessionCount (attribute)

The configured maximum number of concurrent sessions

openSessionCount (attribute)

The number of sessions open at some point during the execution of the getSystemInformation
(§5.4.3.23) operation

activeSessionCount

The field activeSessionCount is filled by the session service operation
getSystemInformation to return the number of sessions active at some point during the execu-
tion of that operation.

sessionTimeout (attribute)

The configured session time out in milliseconds

sessionSuspendTimeout (attribute)

The configured session suspend timeout in milliseconds. The attribute's value is -1 if no session sus-
pend timeout has been configured.

5.4.1.19 SystemInformation

Synopsis:

struct SystemInformation {
 OperatingSystemInformation *operatingSystem;
 RuntimeInformation *runtime;
 MemoryInformation *memory;
 ApplicationInformation *application;
 ServerInformation *server;
}

This complex type acts as a container for information returned by operation getSystemInformation
(§5.4.3.23). Its elements are optional. Whether or not they are present depends on the options argument
passed to getSystemInformation (§5.4.3.23).

5.4.1.20 GetItemPropertiesTextMode

Synopsis:

enum GetItemPropertiesTextMode {
Legacy,
Simple,
Multi,
Mixed}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 60 of 298

EAIWS 4.16

5.4.1.21 GetSystemInformationOptions

Synopsis:

struct GetSystemInformationOptions {
 boolean *operatingSystem;
 boolean *runtime;
 boolean *memory;
 boolean *application;
 boolean *server;
}

Used by getSystemInformation (§5.4.3.23). Allows restriction of the returned information to the subset
that is actually needed.

5.4.1.22 LogConfig

Synopsis:

struct LogConfig {
 int *maxRecordCount;
 boolean *discardOldest;
 boolean *storeStackTrace;
 string *timeZoneId;
 LogFilter *filter;
}

maxRecordCount

the maximum number of records to store in the buffer

default: 1000

discardOldest

affects the behavior if a new log message is to be added to the buffer in case the buffer is already full
(already contains maxRecordCount messages); If true, the oldest message from the buffer is dis-
carded, and the new message is added. If false, the new message will be discarded.

default: true

storeStackTrace

whether or not to store the stack trace of exceptions that are the cause of log messages

default: false

timeZoneId

the time zone ID to use for log message time stamps returned to the client. See
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones for a list of supported time zones
(column 'TZ').

default: UTC

filter

the filter to select the messages to be added to the session-specific log buffer

default: no filter

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 61 of 298

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

EAIWS 4.16

5.4.1.23 LogFilter

Synopsis:

struct LogFilter {
 LogFilterSpec[] include;
 LogFilterSpec[] exclude;
}

include, exclude

A message is added to the session-specific log buffer if

• either the list of include specs is empty or the message matches at least one include spec,

AND

• the message does not match an exclude spec.

5.4.1.24 LogFilterSpec

Synopsis:

struct LogFilterSpec {
 string *level;
 string *facility;
 string *origin;
}

level, facility, origin

optional POSIX Extended Regular Expressions that must match, if specified as a non-empty string,
the whole level, facility or origin of the message.

Matching of the level is done case-insensitive, whereas matching of facility and origin is case sensit-
ive.

A log filter spec that contains neither level, facility nor origin matches any log message.

5.4.1.25 LogData

Synopsis:

struct LogData {
 int discarded;
 int suppressed;
 LogRecord[] data;
}

5.4.1.26 LogRecord

Synopsis:

struct LogRecord {
 string timeStamp;
 string level;
 string facility;
 CallSite *origin;
 string message;
 FaultInfo[] cause;
}

timeStamp

the time when the log message has been generated, such as

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 62 of 298

EAIWS 4.16

2017-12-03T10:15:30+01:00[Europe/Paris]

level

Fatal (should never happen), Error, Warning, Notice, Info, Config, or Debug

facility

a sequence of one or more identifiers separated by single or double colon; Usually, the facility spe-
cified the module that produced the log message. Special facilities are OFML for OFML-related prob-
lems detected by EAIWS, OBX for syntactic errors when reading BSK/OBX streams, and GF::* for
messages generated by FAPI-Shell.

origin

if present, the origin specifies the source code location where the log message has been generated.

message

the actual log message

cause

if the log message was caused by an exception, then this element contains information about the ex-
ception.

If cause contains N elements with N >= 2, then fault I (with I >= 0 and I+1 < N) is caused by fault I+1,
i.e. the faults and indices greater than or equal to one represent nested (or inner) exceptions. Sup-
pressed exceptions are not reported to the client.

5.4.1.27 FaultInfo

Synopsis:

struct FaultInfo {
 string type;
 string message;
 CallSite[] stackTrace;
}

5.4.1.28 CallSite

Synopsis:

struct CallSite {
 string className;
 string methodName;
 string *fileName;
 int *lineNumber;
}

className, methodName

the name of the method, and the name of the class containing the method, that generated the log
message

fileName, lineNumber

if present, the source file name and line number where the log message has been generated; This
information may be missing as it requires the availability of debug information for the method that
generated the log message.

5.4.1.29 ResolveURIsOptions

Synopsis:

struct ResolveURIsOptions {string serverBase}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 63 of 298

EAIWS 4.16

serverBase

The server base, if specified, must be an absolute hierarchical URI that is used instead of the server
base derived from the HTTP header of the SOAP request. It affects the URLs returned by the opera-
tion as well as URLs embedded in files referenced by these URLs.

5.4.1.30 ServerResponse

Synopsis:

final struct ServerResponse{
 string origin;
 string messageId;
 StringPair[] data;
 SendMessageStatus statusCode;
 string[] errorDetail;

 string targetErrorCode
}

origin

Identifies the origin of the response. Same rules as for ClientMessage.target, but the substring following
plugin: is always non-empty.

messageId

Identifies the message. It is always equal to the messageId of the corresponding ClientMessage.

data

Is the payload of the response, a possibly empty list of key/value pairs. Keys must adhere to the rules for
NCName. data is always empty if statusCode is not OK.

statusCode

Is used to signal and identify error during message delivery.

errorDetail

Is used to provide additional information for some kinds of errors.

5.4.1.31 LoadSessionOptions

Synopsis:

LoadSessionOptions (
string suffix,
boolean assignNewProjectId,

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 64 of 298

EAIWS 4.16

5.4.2 Faults

5.4.2.1 SessionServiceFault

Synopsis:

struct SessionServiceFault {
 string* message;
}

A SessionServiceFault is returned by operations of the session service in case of errors the Online Con-
figurator was prepared to detect and deal with (i.e. to recover cleanly).

5.4.3 Operations

5.4.3.1 hasOpenSession

Synopsis:

boolean hasOpenSession();

The hasOpenSession operation can be called any time to test whether the Online Configurator has an
open session. Naturally, the client should not have an open session when it calls this operation, albeit doing
so would cause no harm other than the waste of computing resources.

5.4.3.2 openSession

Synopsis:

SessionId openSession(StringPair[] args) throws SessionServiceFault;

The openSession operation is used to create a new session. As virtually all other web service operations of
the Online Configurator require an open session, this operation is usually the first operation called by a client
of the Online Configurator.

It is not an error if a single client simultaneously opens and works with multiple sessions.

The following options are defined for openSession:

-startup <startup-file-name>

The -startup option specifies the base name of the session start-up file. The full path name of the
session start-up file is $EAIWS/etc/startup/<startup-file-name>.cfg.

-locale <locale-name>

The -locale option may be used to specify the locale used by the session. It overrides the locale
specified in the session or server start-up files. For more information see sections 4.1.1 and 5.4.3.10.

Unknown options are ignored.

A SessionServiceFault is returned if any of the following conditions occurs:

• The maximum number of configured or licensed sessions has been reached.
• The <startup-file-name> does not name an existing session start-up file.
• Numerous other errors, usually caused by incorrect configuration of the Online Configurator.

5.4.3.3 closeSession

Synopsis:

void closeSession(SessionId sessionId) throws SessionServiceFault;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 65 of 298

EAIWS 4.16

The closeSession operation closes the session identified by the sessionId argument. Once this opera-
tion has executed, any other operation using the same sessionId will fail.

The invocation of the closeSession operation has no effect if the sessionId argument does not identify
an open session.

The closeSession operation can't be used with a session context ID as their first argument.

A SessionServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID.

5.4.3.4 keepAlive

Synopsis:

boolean keepAlive(SessionId sessionId) throws SessionServiceFault;

In order to avoid a session being closed due to an expired session timeout the client may periodically invoke
the keepAlive operation. If the sessionId argument identifies an open session then the session’s time-
out timer is reset to it’s initial value (§4.1.6) and the operation returns true. Otherwise, the operation returns
false.

The keepAlive operation can't be used with a session context ID as their first argument.

A SessionServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID.

5.4.3.5 newSessionContext

Synopsis:

SessionId newSessionContext(SessionId sessionId,
SessionContextData? ContextData)

throws SessionServiceFault;

struct SessionContextData {
UUID? projectKey; // attribute

}

Session contexts are a mechanism to to allow clients to pass implicit parameters to (web service) operations
that are required by most operations. As of now, the only such parameter is the project key (a kind of handle
for an in-memory instance of a project).

To use a session context, a client will create a session context, set the implicit parameters stored in the ses-
sion context, and use the session context ID instead of the session ID as the sessionId argument of web ser-
vice operations. The implementations of these operations will then use the session ID stored in the session
context as the actual session ID, and use implicit parameters stored in the session context if and when
needed (in other words, an operation which does not require a project should not fail just because the ses-
sion context contains a project key which does not reference one of the session's open projects).

Once no longer needed, a client may dispose a session context. All session contexts of a session are auto-
matically disposed when the session is closed.

In general, and unless explicitly specified otherwise, all operations which take a session ID as their first argu-
ment may be invoked with a session context ID. If so, the session ID stored in the session context will be
used as the actual session ID.

Furthermore, if the operation requires a project, the project key stored in the session context will be used to
identify the project to operate on. The operation will fail if the project key does not identify one of the projects
currently held open by the session. On the other hand, if the project key of the session context is not spe-
cified, the operation will operate on the session's current project (the same project as used with operations
invoked with an actual session ID).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 66 of 298

EAIWS 4.16

The operation newSessionContext creates a new session context for the session specified by the first ar-
gument.

Depending on whether argument sessionId is a session ID or a session context ID, the default value for
the project key stored in the new session context is either the key of the session's current project, or the pro-
ject key from the original session context, or unspecified if the original session context does not specify a
project key (in which case operations on the session context will operate on the session's current project un-
less a project key has been set for the session context).

The optional contextData argument, if specified, is used to initialize the session context. See operation
updateSessionContext for more information.

The operation returns a session context ID which can be used as the sessionId argument of most EAIWS
web service operations until the context is disposed, either explicitly with operation disposeSessionCon-
text, or implicitly when the session is closed.

5.4.3.6 disposeSessionContext

Synopsis:

void disposeSessionContext(SessionId contextId)
throws SessionServiceFault;

Dispose the session context specified by argument contextId. The operation has no effect if an actual ses-
sion ID is passed as contextId. Disposing a session context with a valid project key does not close the
project identified by this key.

5.4.3.7 getSessionContext

Synopsis:

SessionContextData? getSessionContext(SessionId contextId)
throws SessionServiceFault;

Get information about the session context specified by argument contextId.

If argument contextId is a session context ID, the returned instance of SessionContextData contains
all information stored in the session context (except the session ID).

If argument contextId is a session ID, the operation doesn't fail, but doesn't return an instance of Ses-
sionContextData either.

5.4.3.8 getAllSessionContexts

Synopsis:

SessionContext[] getAllSessionContexts(SessionId sessionId)
throws SessionServiceFault;

struct SessionContext : SessionContextData {
SessionId contextId; // attribute

}

Get information about all currently existing session contexts of the session specified by argument ses-
sionId (which may be one of the session's session context IDs).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 67 of 298

EAIWS 4.16

5.4.3.9 updateSessionContext

Synopsis:

void updateSessionContext(SessionId contextId,
SessionContextData contextData)

throws SessionServiceFault;

Update the specified session context.

Argument contextId must be a session context ID. The operation fails if a session ID is specified.

If field projectKey of argument contextData is specified, the project key stored in the session context is
updated to the specified project key, or reset (becomes unspecified) if the specified project key is the NIL-
UUID (may be represented by an empty string).

Replacing the project key in a session context does not close a previously referenced project.

The operation does not ensure that the project key, if specified and not NIL, actually matches the key of one
of the session's open projects. However, since the project keys used in the web service APIs are a special
kind of V8 UUIDs, attempts to set the project key of the session context to a randomly created UUID will fail.

5.4.3.10 setLocale

Synopsis:

void setLocale(
string sessionId,
string name,
string timeZone,
int tzOffset
)

If invoked with a session context ID as first argument (see also §5.4.3.5), the session ID stored in the ses-
sion context will be used as the actual session ID. So the locale is changed for the whole session including
all projects loaded in the session.

Optional parameters 'timeZone' and 'tzOffset' (types string and integer)

TmeZone: if specified and not empty, should be a time-zone accepted by ZoneId.of(String)

If it is valid the time-zone will be used as the session's new time-zone, regardless of whether or not 'tzOffset'
has been specified.

If the time-zone is not valid and 'tzOffset' has not been specified then the operation will fail.

If the time-zone is not valid and 'tzOffset' has been specified then the session's new time-zone will be set ac-
cording to the zone offset.

tzOffset: if specified, must be an integer between -840 and +840, inclusive, regardless of whether or not the
value is actually used to set the time zone.

5.4.3.11 getLocale

Synopsis:

string getLocale(
string sessionId,
boolean withTimeZone

) throws SessionServiceFault;

Optional parameter 'withTimeZone' (type boolean).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 68 of 298

EAIWS 4.16

If this parameter is true, the return value consists of the locale name and time-zone ID, separated by a
comma.

A SessionServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.4.3.12 setSessionProperty

Synopsis:

void setSessionProperty(SessionId sessionId, string name, string value)
 throws SessionServiceFault;

This operation is used to set session-specific properties that affect the operation of the Online Configurator.
The name argument must be set to the property’s name, and the value argument to the property’s value, con-
verted to a string if numeric.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
The properties will be changed for the whole session including all projects loaded in the session.

The following properties are supported:

egr.eai.ws.catalog.preferred_icon_size

Setting this property affects the size of icons returned by the catalog service. This property can also
be set through the setPreferredIconSize operation of the CatalogService. For more inform-
ation, see §5.5.3.9.

egr.eai.ws.basket.material_icon_format

Setting this property affects the format of material images returned by operations of the basket ser-
vice. The value must be a possibly empty comma-separated list of file name extensions. White
space around file name extensions is ignored. Each file name extension must consist of a dot, fol-
lowed by a non-empty sequence of ASCII letter, digit or underscore.

For each material image to be returned, the basket web service will iterate over the list of extensions
until it finds an image file using the current extension. If the list of extensions is empty, no material
images will be returned.

In this version:

Changed default value of session property 'egr.eai.ws.basket.material_icon_format' from '.jpg' to
'.png,.svg,.jpg'.

egr.eai.basket.preserve_price_date

If set to true always preserve price date when reading a BSK/OBX file if it has been written by the
same session, thus preserving the price date during copy/paste in the same session. It also ensures
suspend/resume preserves the price date in case the default value of session property egr.eai.bas-
ket.preserve_price_date ever changes.

If set to false the price date is ignored, when articles read from OBK/BSK, or from OBX originating
from another session.

A SessionServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The property name is unknown.
• The format of the property value is invalid (e.g. the value for a property of type integer cannot be

parsed as an integer).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 69 of 298

EAIWS 4.16

• The property value is out of range or otherwise invalid.

5.4.3.13 getSessionProperty

Synopsis:

string* getSessionProperty(SessionId sessionId, string name)
 throws SessionServiceFault;

This operation is used to get the current value of session-specific properties, converted to a string.

See §5.4.3.12 for a list of supported properties. The operation returns null if the property name is unknown.

If a property has not been set by the setSessionProperty operation, the getSessionProperty opera-
tion returns the default value.

A SessionServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.4.3.14 saveSession

Synopsis:

string saveSession(SessionId sessionId,
 string uri,
 SaveSessionOptions* options)
 throws SessionServiceFault;

The saveSession operation saves the state of the current session into a pCon.basket compatible project
(OBK) file. If the uri argument is an empty string, the project file is written to the working directory of the cur-
rent session, and the operation returns an HTTP URL that can be used by the client to download the project
file. The URL may be passed to the loadSession operation to load the project into the same session. If the
project file is no longer needed, the client may use an HTTP DELETE request to delete the project file on the
server.

If the uri argument is set to a FILE URL, the Online Configurator treats the URL’s path as a path into its
local file system, and attempts to save the project file under this path. The
egr.eai.server.file_access property of the session or server configuration file must be properly con-
figured for this to work (§4.2.1).

URI schemes other than “file” are currently not supported.

The suffix option is ignored if an URI is specified.

A SessionServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The uri argument is not empty and the syntax of the URI is invalid.
• The suffix option is specified (and the uri argument is empty), and the suffix contains a character

not allowed in file names, or would result in an otherwise invalid file name (like a file name whose
length exceeds the maximum length of file names supported by the underlying file system).

• The uri argument is not an empty string and the URI uses a scheme other than “file”.
• The FILE URL can not be converted into a path name.
• The server has not been configured to be allowed access to the file referenced by the FILE URL.
• The file already exists and the overwrite option has not been set to true.
• legacyCalculationName is not empty and does not specify the name of a calculation added to

the project
• legacyCalculationName specifies a calculation added to the project, but the underlying pricing

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 70 of 298

EAIWS 4.16

procedure is not considered eligible for export as a legacy calculation.
• legacyCalculationName is empty, the project contains at least one calculation, and the operation

is unable to identify a single calculation that is eligible for export as a legacy calculation (eligibility of
multiple calculations is reason for failure).

• The Online Configurator encountered some other problem while saving the project file (input/output
error, file system full, inconsistent session state, …).

For a pricing procedure to be considered eligible for export, all of the following conditions must be met:

• The line tags GROSS_SALES_PRICE (preferred) or PD_SALES_PRICE and NET_VALUE identify a
usable range of lines.

• None one of the line tags GROSS_PURCHASE_PRICE, PD_PURCHASE_PRICE and
PURCHASE_VALUE identifies a line, or the identify a usable range of lines
(GROSS_PURCHASE_PRICE is preferred over PD_PURCHASE_PRICE).

• The lines identified by the aforementioned tags must be subtotal lines, or price conditions with line
insert mode Always.

• The lines between the first and last line of the ranges specified above must be subtotal or text lines
(both will be ignored by the export), or condition lines with condition classes Price or
PriceModifier. (Condition class Tax and line type CalculationBreak cause an error.)

All conditions are exported as item discounts, and the rounding of item discounts is disabled that the total net
value of the exported legacy calculation is equal to the net value of the original calculation. For taxes this can
not be guaranteed due to limitations of the legacy calculation scheme.

5.4.3.15 loadSession

Synopsis:

string loadSession(SessionId sessionId,
 string uri,
 LoadSessionOptions* options)
 throws SessionServiceFault;

struct LoadSessionOptions {
 string* suffix;
}

The loadSession operation is used to load a pCon.basket compatible project (OBK) file into the current
session.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
When invoked with a session context ID, the operation sets the project key of the session context to the key
of the new or loaded project, but never close the session context's old 'current project', regardless of whether
it had been identified by a project key stored in the session context or, in the absence of such a key, was
(and remains) the session's current project.

On the other hand, if these operations are invoked with a session ID, and if the new project can be created or
loaded successfully, then the new project will always become the session's current project, and the old cur-
rent project is always closed, regardless of whether there is a session context referencing this project. If
there is such a session context, operations invoked for this session context will subsequently fail if they re-
quire a valid project until the project key of the session context has been reset or is set to the key of one of
the projects currently held open by the session.

If the suffix option is not specified, the operation uses “.obk” as the suffix of the project file. If the client
sets the suffix option to an empty string, then no suffix is appended to the project file name. Otherwise, the
Online Configurator checks whether the suffix starts with a dot, prepending one if it does not, and appends
the resulting suffix to the project file name.

The client should use an HTTP PUT request with this URL to upload the project file into the session’s work-
ing directory. The upload does not actually load the project into the current session.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 71 of 298

EAIWS 4.16

The client may use an HTTP DELETE request to delete the uploaded file, either before or after it has been
loaded into the current session.

If the uri argument is not an empty string, it must be one of the following:

• a HTTP URL returned by a previous invocation of the loadSession operation on the same session,
and uploaded by the client

• a HTTP URL returned by a previous invocation of the saveSession operation on the same session
• a FILE URL pointing to a file within the local file system of the Online Configurator

The loadSession operation loads the project file referenced by the URI into the current session. If the pro-
ject file could be loaded successfully, the current state of the session is replaced with the state read from the
project file. If there was an error, the session’s state is left unchanged.

If the uri argument is a FILE URL, The egr.eai.server.file_access property of the session or server
configuration file must be properly configured (§4.2.1) or the Online Configurator will reject access to the pro-
ject file.

The suffix option is ignored if the uri argument is not an empty string.

A SessionServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The uri argument is not empty and the syntax of the URI is invalid.
• The suffix option is specified (and the uri argument is empty), and the suffix contains a character

not allowed in file names, or would result in an otherwise invalid file name (like a file name whose
length exceeds the maximum length of file names supported by the underlying file system).

• The uri argument is not an empty string and the URI is neither an URL returned by a previous in-
vocation of the loadSession or saveSession operations on the same session, nor a FILE URL.

• The FILE URL can not be converted into a path name.
• The server has not been configured to be allowed access to the file referenced by a the FILE URL.
• The Online Configurator encountered some other problem while loading the project file (input/output

error, corrupted project file, file system full, …).
• The BSK/OBX stream contains a set-article and the license feature

egr.eai.basket.set_articles is not enabled.
• After load, the number of items, not counting the top folder and basket sub-article items, is greater

than one and the license feature egr.eai.server.multiple_positions is not enabled.

5.4.3.16 setProjectSettings

Synopsis:

void setProjectSettings(SessionId sessionId, ProjectSettings settings)
 throws SessionServiceFault;

The setProjectSettings operation is used to set individual project settings that will eventually be re-
turned by an invocation of the getProjectSettings operation or be written to the project file by the
saveSession operation.

All fields of the ProjectSettings structure (§5.4.1.6) and the referenced structures may be null
(§5.1.1.3.1). Each field of the referenced structures (ProjectData and CustomerData) corresponds to
one project settings property.

The client should set only those fields whose corresponding properties it wants to change. If a field is null,
the operation keeps the current value for the property.

A SessionServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 72 of 298

EAIWS 4.16

5.4.3.17 getProjectSettings

Synopsis:

ProjectSettings getProjectSettings(SessionId sessionId)
 throws SessionServiceFault;

The getProjectSettings operation returns the current project settings that have previously been read
from a project file by the loadSession operation or set by the setProjectSettings operation.

Although all fields of the ProjectSettings structure (§5.4.1.6) and the referenced structures may be null
(§5.1.1.3.1), the operation sets all fields of the ProjectSettings structure and the referenced structures
(ProjectData and CustomerData) to non-null values, even if the corresponding project settings proper-
ties have not been explicitly set (in this case, the fields are set to an empty string).

A SessionServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.4.3.18 setProjectAppData

Synopsis:

void setProjectAppData(SessionId sessionId, string appKey, string[] data)
 throws SessionServiceFault;

The setProjectAppData operation is used to attach application-specific (or client-specific) data to the pro-
ject. This data can be accessed using the getProjectAppData (§5.4.3.19) operation and is part of the pro-
ject file saved and loaded by the saveSession (§5.4.3.14) and loadSession (§5.4.3.15) operations. For
more information, see §5.3.

A SessionServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• One of the elements of data contains an invalid location path, or the location path is not followed by
an equals sign (=).

5.4.3.19 getProjectAppData

Synopsis:

string*[] getProjectAppData(SessionId sessionId,
 string appKey,
 string[] paths)
 throws SessionServiceFault;

The getProjectAppData operation is used to fetch application-specific (or client-specific) data attached to
the current project which has either been read by the loadSession (§5.4.3.15) operation as part of the pro-
ject file, or previously attached to the current project by the setProjectAppData (§5.4.3.18) operation. For
more information, see §5.3.

A SessionServicFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• One of the elements of data contains an invalid location path.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 73 of 298

EAIWS 4.16

5.4.3.20 getUploadURL

Synopsis:

string getUploadURL(SessionId sessionId,
 SessionCacheFileType fileType,
 string* suffix)
 throws SessionServiceFault;

This operation may be used to get an URL that can be used with HTTP PUT to upload a file into the cache
directory of the current session. Once the file has been uploaded, the URL can be used with other operations
(loadSession, paste of basket web service) for further processing of the file.

The fileType parameter must be passed to the operation and must be a valid session cache file type (as
defined by the enum type). The suffix parameter is optional. If it is missing (or null in many language bind-
ings), the operation uses the default suffix for the file type ('.obk' for 'Project' and '.obx' for 'CutBuffer'). Other-
wise, if the suffix is not empty and does not start with a period ('.'), a period is prepended to the suffix. The
suffix is then used as the file name suffix of the path component of the returned URL.

5.4.3.21 importFile

Synopsis:

 string importFile(SessionId sessionId,
string url,

 string[] attributes,
 ImportFileOptions* options)
 throws SessionServiceFault;

The importFile operation is used to import a file into the session. Importing a file means to copy the file
into the session cache and compute an URI that can be used subsequently to identify the imported file.

The url argument must be either an HTTP URL previously returned by the getUploadURL operation, or a
FILE URL referencing a file within the local file system of the Online Configurator.

In case of a FILE URL, the egr.eai.server.file_access property of the session or server
configuration file must be properly configured or the Online Configurator will reject access to the file.

The attributes argument is a list of attribute strings to be stored together with the file within the session
cache. Each attribute string consists of a key and a value, separated by a single '=' (EQUALS SIGN,
U+003D). White space around key and value are not stripped. Keys must consist of Basic Latin letters, digits
and '_' (LOW LINE, SPACING UNDERSCORE, U+005F) only, and must not start with a digit. The format of
values depends on the key.

There are the following well known attributes:

 suffix

the file suffix, not including the leading dot (may be empty); If this attribute is not specified, the
attribute is added automatically, using the suffix of the supported file. If specified, it takes precedence
over the suffix of the imported file. In any case, the suffix is converted to lower case before stored in
the session cache.

If the suffix is that of a recognized image file format (see below), or the file is identified as having a
recognized image file format, both must match or the operation fails.

 width, height

the width and height (in pixels) of raster image files; The value must be a decimal number greater
than zero. If one is specified, both must be specified. A client should always specify these attributes
for raster image files. If they are not specified, and the file is recognized as a raster image file, the
operation tries to set these attributes. If it is unable to do so, the operation fails.

Recognized image file formats and corresponding suffixes are JPEG (suffixes "jpeg" and "jpg"), PNG (suffix
"png"), GIF (suffix "gif"), BMP (suffix "bmp") and TIFF (suffixes "tiff" and "tif"). The operation should be able to

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 74 of 298

EAIWS 4.16

determine width and height for all recognized image file formats except TIFF.

The options argument as well as individual options are optional. If not specified, the default value applies.
Right now, the following option is defined:

 boolean *deleteAfterImport;

If true, the file specified by the url argument is deleted once it has been successfully imported into
the session cache. The default value of this option is false.

If the file is to be deleted, but the delete operation fails for some reason, a message is written to the
log file but the importFile operation succeeds anyway.

If the operation succeeds, the return value is an URI with scheme imp that identifies the imported file. The
URI may be used with the resolveURIs operation to get an URL that can be used to access the cached file.

The operation fails if

• the specified session ID is not a valid string representation of an UUID or does not represent an
open session

• the specified URL is not an HTTP or FILE URL or does not identify an accessible file

• one of the attribute strings does not start with a valid attribute key immediately followed by an
EQUAL SIGN

• the file to be imported is empty

• the file is recognized as an raster image file and the width and/or height attributes are specified
and have an invalid value, only one of them has been specified, or none of them has been specified
and the operation is unable to determine their values

• the file format is not recognized by the suffix matches one of the suffixes of file formats the operation
should be able to recognize

• the file format is recognized but the suffix (either explicitly specified derived from the file name) does
not match the file format

• there was some input/output error reading the file or storing it in the session cache

5.4.3.22 resolveURIs

Synopsis:

 string resolveURIs(SessionId sessionId,
string[] uris,
ResolveURIsOptions options)

 throws SessionServiceFault;

The resolveURIs operation is used to convert URIs with URI scheme imp or gen into URLs that can be
used to access the files identified by these URIs.

The uris argument must be a possibly empty list of strings representing URIs with scheme imp or gen.

The operation resolves only URIs for files that have been generated by or imported into this session.

If the operation succeeds, the return value is a list of HTTP URLs with the same number of entries as the
uris argument.

The URL returned at index i of the result list corresponds to the URI at index i of the argument list. If an URI
is unknown, the corresponding return value for this URI is an empty string.

The operation fails if

• the specified session ID is not a valid string representation of an UUID or does not represent an
open session

• one of the specified URI arguments does not adhere to the URI syntax, is a relative URI, or uses a
scheme other than imp or gen

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 75 of 298

EAIWS 4.16

5.4.3.23 getSystemInformation

Synopsis:

 SystemInformation getSystemInformation(GetSystemInformationOptions *options)
 throws SessionSerivceFault;

The operation may be used to obtain various information about this instance of the Online Configurator.

The options argument allows restriction of the returned information to the subset that is actually needed.
The options argument, if present, has one attribute for each element of return type SystemInformation.
The name of the attribute is the same as the name of the corresponding element. An element will be returned
if the options argument is missing, or the corresponding attribute has value true.

5.4.3.24 configureSessionLog

Synopsis:

 void configureSessionLog(SessionId sessionId,
 boolean enable,
 LogConfig *config)
 throws SessionServiceFault;

The operation enables/disables and configures logging of session-specific log messages.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
The changes will be made for the whole session including all projects loaded in the session.

Log messages generated during the execution of a web-service operation that specifies a session ID may be
stored in a session-specific buffer for later retrieval by the client. To enable this feature,
configureSessionLog must called with parameter enable set to true.

If parameter enable is true, the optional parameter config may be used to adjust some properties of the
session log handler and to select a subset of the session-specific log-messages to be stored in the session
log buffer.

All parameters are optional. If not specified, their default values (or previous values in case of repeated calls
of configureSessionLog with enable set to true) will be used. A call of configureSessionLog with
enable set to false will revert all previously set parameters to their default vaues.

5.4.3.25 getSessionLog

Synopsis:

 LogData *getSessionLog(SessionId sessionId,
 boolean reset)
 throws SessionServiceFault;

The operation retrieves and optionally clears the content of the session specific log buffer.

getSessionLog returns the log messages accumulated since the last time the session log has been
switched from disabled to enabled or the last time getSessionLog has been called with parameter reset
set to true.

If the session log is currently disabled, no log data is returned. Otherwise a LogData element is returned,
containing the number of discarded (in case of buffer overflow) and suppressed (i.e. filtered out) log
messages, as well as a sequence of log records, each one representing a single log message.

5.4.3.26 SendMessage

Synopsis:

 SendMessageResult sendMessage(
SessionId sessionId,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 76 of 298

EAIWS 4.16

ClientMessage[] messages
)

 throws SessionServiceFault;

If the specified session ID is not the NIL UUID, the keepAlive operation is called first and its result will be
returned in the sessionAlive field of SendMessageResult. (If sessionId is the NIL UUID,
sessionAlive will be false.)

The operation calls SessionManager.sendMessage() to deliver the messages to the specified targets.
Response messages, if any, are returned in field messages of SendMessageResult

Operation sendMessage should not be invoked with a session context ID. If it is, field sessionAlive of the
return value is always be false, even if the corresponding session is alive, and the session context ID is
passed as the first argument of method IPlugin.sendMessage(), which may confuse plugins.

5.4.3.27 loadEmptySession

Synopsis:

 Void loadEmptySession(string sessionId)

Its effect is basically the same as loading an empty OBK file (an OBK file immediately written after
openSession), except that certain values like project ID, create date and last-modified date are set to new
values.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
When invoked with a session context ID, the operation sets the project key of the session context to the key
of the new or loaded project, but never close the session context's old 'current project', regardless of whether
it had been identified by a project key stored in the session context or, in the absence of such a key, was
(and remains) the session's current project.

On the other hand, if these operations are invoked with a session ID, and if the new project can be created or
loaded successfully, then the new project will always become the session's current project, and the old
current project is always closed, regardless of whether there is a session context referencing this project. If
there is such a session context, operations invoked for this session context will subsequently fail if they
require a valid project until the project key of the session context has been reset or is set to the key of one of
the projects currently held open by the session.

5.5 Catalog Service

The catalog web service API presents registered manufacturer catalogs as a set of trees18 of catalog nodes.
Each tree represents a single manufacturer catalog19. Trees consist of folder, article and information nodes.

To uniquely identify a catalog node one must either use a catalog path or the pair of catalog ID and catalog
node key.

The catalog path is similar to a file system path. It consists of a list of node names, starting with the name of
the root node, followed by the name of one of it’s child nodes, an so on. The last name in the list is the name
of the node to identify.

When a catalog node is identified by catalog ID and catalog node key, then the catalog ID identifies the man-
ufacturer catalog containing the node, and the catalog node key uniquely identifies the node within this cata-
log.

The catalog implementation supports XCF and OAS catalogs. It allows mixing of XCF and OAS catalogs
within a single data or catalog profile.

18 Strictly speaking, it is a directed acyclic graph of catalog nodes, as a) the edges between nodes are directed (from parent node to
child node), and b) some types of nodes (nodes that can’t have outgoing edges) may have multiple incoming edges (i.e. parent
nodes).

19 Old-style manufacturer profiles may result in more than one manufacturer catalog.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 77 of 298

EAIWS 4.16

5.5.1 Type Definitions

5.5.1.1 ArticleCatalogItem

Synopsis:

object ArticleCatalogItem : CatalogItem {
 string articlePackageId;
 string baseArticleNumber;
 VarCodeType varCodeType;
 string variantCode;
}

articlePackageId

This field contains the package ID of the OFML package containing the product data for the article.

baseArticleNumber

This field contains the base article number of the article.

varCodeType

The type of the variant code stored in an article catalog item.

variantCode

This field contains the initial, possibly partial, variant code of the article.

5.5.1.2 CatalogImage

Synopsis:

struct CatalogImage {
 string purpose;
 LanguageTag language;
 boolean highRes;
 int width;
 int height;
 string name;
 URL url;
}

A reference to an image stored in the catalog.

purpose

The image purpose. Predefined values are 'Icon', 'SmallIcon', 'Image' and 'Info'. Other values may be
reported depending on the catalog data and text purposes specified as part of the lookup options.

In case of an XCF catalog, resources with type 'IT' are mapped to image purpose 'Icon', and
resources with type 'IF' are mapped to image purpose 'Image'.

language

The language as specified in the catalog data.

highRes

The value of the high-resolution flag as specified in the catalog data.

In case of an XCF catalog, the value of 'highRes' is always 'false'.

width

height

The image width and height as specified in the catalog data.

In case of an XCF catalog, both values are always zero.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 78 of 298

EAIWS 4.16

name

The name of the image as specified in the catalog data, with possibly some cleanup applied.

url

The HTTP url that can be used to access the image. May be an empty string if the Online Configurator
knows that it wont find the image (a returned URL does not necessarily mean that the Online Configurator
will actually find the image when a HTTP request is used to download the image).

5.5.1.3 CatalogItem

Synopsis:

object CatalogItem {
 string catalogId;
 string catalogPackageId;
 string catalogNodeKey;
 string name;
 string manufacturerIds;
 CatalogItemType type;
 ItemDescriptor[] descriptors;
 string label;
 URL icon;
 CatalogText[] texts;
 CatalogImage[] images;
 CatalogResource[] resources;
}

The CatalogItem type is used by the catalog web service to return information about a catalog node to the
client. It contains the following fields:

catalogId

Depending on the type of data profile used to register the product data (old-style manufacturer profile
or new catalog profile) the catalog ID consists of either

◦ the OFML manufacturer ID, followed by a colon, followed by a non-empty sequence of decimal
digits, or

◦ the brand ID as specified in the catalog profile (often identical to the commercial manufacturer
ID), a colon, and the catalog ID as specified in the catalog profile.

The catalog ID uniquely identifies the catalog within one instance of the Online Configurator. The
second type of catalog ID, consisting of brand ID and manufacturer-specific catalog ID, is supposed
to be an strictly unique identifier for the catalog, i.e. the same catalog ID should never be used for
another catalog, including another version of the same catalog.

catalogPackageId

Except for root nodes, the catalogPackageId field contains the package ID of the OFML package
whose catalog data contains the catalog node. For root nodes, this field contains an empty string.

catalogNodeKey

The catalog node key is some string used to uniquely identify the catalog node within the manufac-
turer catalog. Other than that, the actual content of the string is implementation defined. In particular,
a client must not try to parse the string to get at the base article number and/or XCF specific variant
key.

For root nodes, this field contains an empty string.

There is no guarantee that a specific catalog node key remains valid for a later version of the same
catalog (or identifies the same node), although some effort is taken to keep catalog node keys valid
as long as the catalog does not change in some incompatible way.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 79 of 298

EAIWS 4.16

name

The name of a catalog node uniquely identifies the node relative to it’s parent. Node names are used
to form catalog paths. Other than that, the actual content of the string is implementation defined. In
particular, a client must not try to parse the string to get at the base article number and/or XCF spe-
cific variant key.

There is no guarantee that a specific catalog node name remains valid for a later version of the
same catalog (or identifies the same node), although some effort is taken to keep catalog node
names valid as long as the catalog does not change in some incompatible way.

manufacturerIds

For catalog items representing the root of a manufacturer catalog, field manufacturerIds contains
a list of commercial manufacturer IDs of all packages referenced by the underlying catalog profile.

(Each manufacturer catalog shows catalog data from all packages referenced by its underlying cata-
log profile, and each catalog profile is represented by a single manufacturer catalog.)

For catalog profiles constructed from data profiles, the set of referenced packages consists of a sub-
set of packages referenced by the underlying data profile, with the subset constructed as follows:

• All packages referenced by a data profile that contain catalog data are separated into
groups, with all packages in a group having the same OFML and commercial manufacturer
IDs, and a non-conflicting set of manufacturer names (as taken from the package registra-
tion file).

• A catalog profile is constructed for each group, with the set of packages in each group aug-
mented by other packages from the underling data profile reachable by a dependency graph
whose edges are determined by DSR keys depend and catalogs.

(Note 1: Multiple (or none at all) catalog profiles may be constructed from a data profile, and
packages that don't contain catalog data may be referenced by more than one of these cata-
log profiles.)

(Note 2: The process of construction of catalog profiles is further complicated by the fact that
data profiles for manufacturers of the same unique concern are combined into a single data
profile, which is then used to construct the catalog profile(s). The same applies to data pro-
files for the same unique manufacturer.)

Given that all packages with catalog data in a catalog profile are required to have the same OFML
manufacturer ID, and the mapping between OFML and commercial manufacturer IDs is supposed to
be bijective, and given the mechanism described above for the construction of catalog profiles from
data profiles, all packages with catalog data referenced by a catalog profile have the same commer-
cial manufacturer ID. This ID is considered the primary manufacturer ID of the catalog profile, and re-
turned as the first item in the list of manufacturer IDs for catalog items representing manufacturer
catalogs.

type

The type field contains the type of the catalog node. For more information about node types see
section 5.5.1.4.

label

The label field contains a short text describing the catalog node. It is supposed to be displayed as
part of the catalog presented to the user.

icon

The icon field contains the URL of a small image that should be displayed as part of the catalog
presented to the user. If no icon is available, then this field contains an empty string.

In case the installed catalog data support multiple icon sizes, the setPreferredIconSize opera-
tion (§5.5.3.9) may be used to specify the preferred icon size.

texts

A reference to a catalog text.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 80 of 298

EAIWS 4.16

images

A reference to an image.

resources

If resource keys were passed to the operation returning this catalog item, this field contains a possibly empty
sequence of the catalog node’s resources matching the specified resource keys. The order of entries in this
sequence is undefined, and their number is not necessarily equal to the number of resource keys.

5.5.1.4 CatalogItemType

Synopsis:

enum CatalogItemType {
 Undefined,
 CatalogView,
 Folder,
 Article,
 Information,
 Graphics,
 MethodCall,
 MetaPlanning,
 Container
}

The CatalogItemType specifies the type of a catalog node. The following node types are defined:

Undefined

If a catalog contains a node of some type that cannot be mapped to any of the other types, then the
Undefined type may be used as the type of such nodes. Right now such nodes are ignored, so the
client should never see nodes of this type, but should nevertheless be prepared to handle them20.
Nodes of type Undefined may have either child nodes or multiple parent nodes, but not both.

CatalogView

OAS has the concept of catalog views. Basically, views are an additional level at the root of the cata-
log structure. Applications are supposed to represent only one view to the user. Usually this is the
default view, but if the catalog defines multiple views, and an application recognizes one of the views
as intended for use with that application, then the application will represent this view to the user.

Catalog view nodes will usually have child nodes.

Folder

Nodes of type Folder are used to group other nodes which are direct or indirect child nodes of the
folder node. Obviously, a folder node may have multiple child nodes, but it must have at most21 one
parent node.

Article

A node of type Article represents an article that can be inserted into the basket structure provided
by the basket web service, and can then be configured (if so intended by the product data). Article
nodes cannot have child nodes, but may have multiple parent nodes.

Information

Information nodes are added to the catalog to represent additional information. Right now, the API of
the catalog web service does not allow access to this information, so the client should probably ig-
nore these nodes.

Like article nodes, information nodes may have multiple parent nodes, but no child nodes.

20 The best way to ‘handle’ a node of type Undefined probably is to ignore the node, together with it’s possible child nodes.
21 Root folders have no parent node.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 81 of 298

EAIWS 4.16

Graphics

MethodCall

MetaPlanning

Nodes of these types are not of much interest for the Online Configurator. For more information, see
the OAS specification.

Container

The container referenced by the catalog item is returned as a resource whose type depends on the
container type, and whose value is an URL for the container file22. The URL may be used to down-
load the container file, or it may be used directly with operation pasteContainer.

The actual type of catalog items returned by operations of the catalog web service depends on the catalog
item type as follows:

CatalogItemType Return Type

Undefined CatalogItem

CatalogView CatalogItem

Folder CatalogItem

Article ArticleCatalogItem

Information CatalogItem

Graphics CatalogItem

MethodCall MethodCallCatalogItem

MetaPlanning MetaPlanningCatalogItem

Container CatalogItem

Future versions of the Online Configurator may return specialized types instead of the CatalogItem type.

5.5.1.5 CatalogResource

Synopsis:

struct CatalogResource {
 LanguageTag language;
 string type;
 string value;
 string url
}

Instances of the CatalogResource type are used to store selected resources of catalog nodes found by
the lookupArticle (§5.5.3.5), getCatalogItem (§5.5.3.6) and listCatalogItems (§5.5.3.7)
operations. The resources are stored in the resources field of the CatalogItem (§5.5.1.31) type returned by
the aforementioned operations. The fields of the CatalogResource type are as follows:

language

The language as specified in the catalog data.

type

The resource type. The resource type starts with either XCF: or OAS:, depending on whether the
resource originates from an XCF or OAS catalog.

Example: The type of the XCF addon resource is XCF:AD, and the type of the OAS graphics
resource is OAS:Graphics.

22 The only container format supported right now is PEC (pCon Exchange Container), and the corresponding resource type is
XCF:PEC.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 82 of 298

EAIWS 4.16

value

The resource value.

5.5.1.6 CatalogText

Synopsis:

struct CatalogText {
 string purpose;
 LanguageTag language;
 string text;
}

A text stored in the catalog.

purpose

The text purpose. Predefined values are CatTextShort and CatTextLong. Other values may be
reported depending on the catalog data and text purposes specified as part of the lookup options.

In case of an XCF catalog, CatTextShort is used as the text purpose for text from the text table.

language

The language as specified in the catalog data.

text

The actual text.

5.5.1.7 DescriptorType

Synopsis:

enum DescriptorType {
 Undefined,
 Keyword,
 Category,
 Designer,
 Characteristic
}

Specifies the type of a descriptor (see LookupOptions §5.5.1.14).

The enumerator Undefined has no equivalent in OAS. The catalog web service should never return a
descriptor with this type. The enumerator Keyword corresponds to OAS type Untyped.

5.5.1.8 DisplayMode

Synopsis:

enum DisplayMode {
Undefined,
All,
Planning2D,
Planning3D,
Configuration,
CAD,
AllVisible,
AllVisibleBasket

}

The DisplayMode is used ((together with the list of item types) to control the visibility of nodes within cata-
logs presented to the user.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 83 of 298

EAIWS 4.16

Display modes are a deprecated XCF concept. They are not supported by OAS. Nevertheless, they are not
totally useless. Clients of the Online Configurator should usually pass 'Configuration' in case an XCF catalog
uses the display mode to control the visibility of article nodes with insert mode 'S' (standard).

The following display modes are defined:

All

The set of visible catalog nodes is not limited by the display mode.

Planning2D

The set of visible catalog nodes is limited to those nodes relevant to 2D planning applications.

Planning3D

The set of visible catalog nodes is limited to those nodes relevant to 3D planning applications.

Configuration

The set of visible catalog nodes is limited to those nodes relevant to applications that operate on
isolated article instances, like application that manage an order list of configurable articles.

CAD

The set of visible catalog nodes is limited to those nodes relevant to CAD applications.

AllVisible

Selects all XCF catalog entries whose display mode has at least one of 3D, 2D, ‘planning’ or ‘config-
uration’ set.

AllVisibleBasket

Behaves like `AllVisible` but omits catalog items whose display mode has ‘not basket’ set.

5.5.1.9 DisplayText(Catalog)

Synopsis:

struct DisplayText extends string (string lang)

5.5.1.10 GetPackageInfoOptions

Synopsis:

struct GetPackageInfoOptions (
boolean? allData,
boolean? allLanguages,
boolean? useManufacturerConfig,
boolean? manufacturerId,
boolean? supplierId,
boolean? seriesIds,
boolean? releaseVersion,
boolean? releaseDate,
boolean? releaseState,
boolean? languages,
boolean? type,
boolean? category,
boolean? dependencies,
boolean? catalogs,
boolean? features,
boolean? seriesType,
boolean? priceProfileRegionId,
boolean? specialArticleScheme,
boolean? globalTradeItemNumber,
boolean? maskedCatalogs,
boolean? releaseText,
boolean? manufacturerName,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 84 of 298

EAIWS 4.16

boolean? programName,
boolean? distributorName,
boolean? copyright,
boolean? Description,
boolean? releaseTimestamp

)

5.5.1.11 ItemCategory

Synopsis:

struct ItemCategory {
string subcategoryIds

}

ItemCategory is an extension of ItemDescriptor. Whenever a descriptor with type Category is returned,
the type of the returned descriptor element is actually ItemCategory.

subCategoryIds

Is an optional child-element of type 'string'. Sub-categories are returned if the lookup option (§
§5.5.1.14) subCategories is true.

5.5.1.12 ItemDescriptor

Synopsis:

struct ItemDescriptor {
 Synonym[] synonyms;
 string id;
 DescriptorType type;
}

synonyms

synonyms are optional child-elements. synonyms are returned for item descriptors if the lookup
option (§ §5.5.1.14) synonyms is true.

Standard synonyms are returned in front of non-standard synonyms. The number of standard
synonyms returned for a particular descriptor depends on the catalog data. EAIWS does not try to
ensure that there is at least one or no more than one standard synonym.

5.5.1.13 LanguageTag

Synopsis:

typedef string LanguageTag;

Language tags supported by the Online Configurator are a subset of language tags described by RFC 5646.

Language tags returned by the web services interfaces consist of the primary language subtag and optionally
the script and region subtags. Es an exception, the undetermined language is represented by an empty
string instead of "und".

Language tags accepted by the web service interfaces must conform to the 'langtag' syntax rule defined in
RFC 5646. However, only the primary language, script and region subtags are significant. All other subtags
are discarded. Furthermore, the primary language, script and region subtags must be registered in the IANA
Language Subtag Registry.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 85 of 298

EAIWS 4.16

5.5.1.14 LookupOptions

Synopsis:

struct LookupOptions {
 DisplayMode* displayMode;
 CatalogItemType[] itemTypes;
 LanguageTag[] languages;
 string[] textPurposes;
 string[] imagePurposes;
 string[] resourceTypes;
 boolean descriptors;
 boolean subCategories;
 boolean synonyms;
 boolean resourceValues,
 boolean resourceURLs
}

The lookup options are used as an optional parameter for the lookupArticle (§5.5.3.5),
getCatalogItem (§5.5.3.6) and listCatalogItems (§5.5.3.7) operations. All fields of LookupOptions
are optional too. For all fields, a default value is defined that is used if either no lookup options are passed to
the operation, or if the field has no value.

displayMode

The display mode restricting the set of catalog nodes returned. Should be left unset by most clients.

Default Value: Configuration

itemTypes

A set of item types used to restrict the set of catalog nodes returned. The afore mentioned operations
won't return a catalog item whose type is not contained in this set.

If the set of item types contains CatalogView, then the listCatalogItems operations lists the
views of an catalog if called with a path consisting of a single element, and the second element in
catalog paths represent OAS catalog views. In case of XCF catalogs, there is only one view, always
named DEFAULT.

Default Value: ['Folder', 'Article', 'Information']

As a special case, if the only item type specified is 'CatalogView', then the default value plus 'Cata-
logView' is used instead.

languages

A prioritized list of languages to use during text, image and resource lookup.

For each language in the list, the Online Configurator looks if there is at least one matching entry. If
so, the entry is returned (or, in case of images, possibly multiple entries are returned). Otherwise, the
process is repeated with the next language. As a last resort, the process is repeated with the un-
determined language.

Default Value: the effective set of catalog languages

textPurposes

The text purposes of the texts to return. A text purpose must be a non-empty sequence of ASCII let-
ter, digit or underscore, not starting with a digit. For predefined text purposes, see the description of
CatalogText.

For each specified text purpose, the Online Configurator returns at most one CatalogText per
catalog node.

imagePurposes

The image purposes of the images to return. A image purpose must be a non-empty sequence of
ASCII letter, digit or underscore, not starting with a digit. For predefined image purposes, see the de-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 86 of 298

EAIWS 4.16

scription of CatalogImage.

For each specified image purpose, the Online Configurator may return multiple CatalogImage's
per catalog node.

resourceTypes

The types of the resources to return. If the resource type does not contain a colon (':'), it is assumed
to be an XCF resource type. Otherwise, it must start with XCF: or OAS:. The rules for the actual re-
source name are as follows:

XCF: A sequence of at least two ASCII upper case letters or digits, starting with a letter OAS: A non-
empty sequence of ASCII letters, digits or underscore, not starting with a digit

descriptors

If set to true, this option enables operations to return additional information. See descriptions of com-
plex types CatalogItem (§5.5.1.3)and ItemCategory (§5.5.1.11) for more information.

Default: false

subCategories

If set to true, this option enables operations to return additional information. See descriptions of com-
plex types CatalogItem (§5.5.1.3),ItemCategory (§5.5.1.11)and ItemDescriptor
(§5.5.1.12) for more information.

Except for the getItemDescriptors operation, the default values of this option is false. For the
getItemDescriptors operation, the default values is true.

synonyms

If set to true, this option enables operations to return additional information. See descriptions of com-
plex types CatalogItem (§5.5.1.3), ItemCategory (§5.5.1.11) and ItemDescriptor
(§5.5.1.12) for more information.

Except for the getItemDescriptors operation, the default values of this option is false. For the
getItemDescriptors operation, the default values is true.

5.5.1.15 MaskedCatalog

Synopsis:

struct MaskedCatalog (string moduleKey, Version? version)

5.5.1.16 MetaPlanningCatalogItem

Synopsis:

object MetaPlanningCatalogItem : CatalogItem {
 string metaPlanningWorkflow;
 string metaPlanningClass;
 string metaPlanningArgument;
}

5.5.1.17 MethodCallCatalogItem

Synopsis:

object MethodCallCatalogItem : CatalogItem {
 MethodCallType methodCallType;
 string methodCallContext;
 string methodCall;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 87 of 298

EAIWS 4.16

5.5.1.18 MethodCallType

Synopsis:

enum MethodCallType {
 Instance,
 Class
}

The type of a method call. See the OAS specification for more information.

Instance

The method is called on an OFML instance (object), e.g. an instance which represents an article.
Class

A (static) class method is called.

5.5.1.19 PackageCategory

Synopsis:

Restriction: string

enum PackageCategory {
Unknown,
Furniture,
Building

 }

5.5.1.20 PackageDependency

Synopsis:

struct PackageDependency (PackageId packageId, Version version)

5.5.1.21 PackageInfo

Synopsis:

struct PackageInfo (
string packageId,
string? ManufacturerId,
string? supplierId,
string[]? SeriesIds,
string? distributionRegion
Version? releaseVersion,
date? ReleaseDate,
dateTime? releaseTimestamp;
string? releaseState,
string[]? languages,
PackageType? type,
PackageCategory? category,
PackageDependency[]? dependencies,
PackageId[]? catalogs,
string[]? features,
SeriesType? seriesType,
string? priceProfileRegionId,
string? specialArticleScheme,
string? globalTradeItemNumber,
MaskedCatalog[]? maskedCatalogs,
DisplayText[]? releaseText,
DisplayText[]? manufacturerName,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 88 of 298

EAIWS 4.16

DisplayText[]? programName,
DisplayText[]? distributorName,
DisplayText[]? copyright,
DisplayText[]? description,

)

5.5.1.22 PackageType

Synopsis:

Restriction: string

enum PackageType {
Unknown,
Foundation,
ProductWithCatalog,
ProductWithoutCatalog,
CatalogOnly,
Extension,
ACMaterial,
User,
AttributeSelection
}

5.5.1.23 ScoredCatalogItem

Synopsis:

struct ScoredCatalogItem {CatalogIte item, float score}

Elements of this type are used by the return value of the search operation to return scored catalog items,
where a higher value of score signals a better match with the query.

5.5.1.24 SearchFlag

Synopsis:

enum SearchFlag {
 ViewItems,
 CatalogItems,
 WildcardsInFilter,
 FolderText
}

The searchFlags are used by SearchParameterSet. The following flag values are available:

 ViewItems

If only ViewItems has been specified, the search operation only considers structure items in
selected views.

CatalogItems

If only CatalogItems has been specified, the searchoperation only considers catalog items. The
set of selected views has no effect.

 WildcardsInFilter:

The flag WildcardsInFilter enables the use of wildcard queries in filter expression (see
description of filter expression syntax below).

FolderText

Allow operation searchArticle to return items if the search expression is found in the name of an

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 89 of 298

EAIWS 4.16

ancestor item (folder). I.e., if there is a folder whose name matches the search expression then all
items contained within the folder (children, grandchildren, …) will be returned too.

Since the weight of direct matches is 1.0 and the weight of folder matches in only 0.25, items whose
own name matches the search expression will usually precede items whose name does not match
the search expression but are contained within a folder with a matching name.

5.5.1.25 SeriesType

Synopsis:

Restriction: string

enum SeriesType {
Undefined,
GOMeta

 }

5.5.1.26 BasicSearchParameterSet

Synopsis:

struct BasicSearchParameterSet {
 int firstHitPosition;
 int numberOfHits;
 string[] catalogIds;
 string[] views;
 searchFlag[] flags;
}

firstHitPosition

Defines the offset of first returned hit. Can be used in combination with numberOfHits to implement
paged result representation.

numberOfHits

Defines the maximum number of hits (i.e. catalog items) returned by the search operation.

catalogIds

Identifys the catalogs to search in. The current implementation allows only a single catalog ID.

views

These elements are used to determine the set of catalog views (OAS views) to search for catalog
items (actually structure items in OAS lingo). The set of selected catalog views is determined as
follows:

• If no view has been specified, only the default view is selected.

• If at least one of the specified view names is '*', then all views are selected.

• Otherwise, the set of selected view names is the possibly empty intersection of specified view
names and the names of available views.

flags

The following flag values are available:

 ViewItems, CatalogItems:

Depending on the combination of these flags, and the selected views, the search behaves
as follows:

If neither ViewItems nor CatalogItems has been specified, the search operation
searches considers structure items in selected views and catalog items not referenced by
structure items from selected views.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 90 of 298

EAIWS 4.16

If only ViewItems has been specified, the search operation only considers structure items
in selected views.

If only CatalogItems has been specified, the searchoperation only considers catalog
items. The set of selected views has no effect.

If both ViewItems and CatalogItems has been specified, the search operation considers
view items in selected views and all catalog items. Note that this will most likely result in
duplicates, as the result set will usually contain both structure items and the referenced
catalog items.

WildcardsInFilter:

The flag WildcardsInFilter enables the use of wildcard queries in filter expression (see
description of filter expression syntax below).

5.5.1.27 SearchParameterSet

Synopsis:

struct SearchParameterSet : BasicSearchParameterSet{
 string query;
 filter filter;
}

query

This element contains the query string entered by the user. If a filter (§5.5.1.31) is specified, the
query string may be empty. See below for more information about the query syntax (§5.5.1.30).

filter

This element may contain a filter expression to restrict the search to a subset of the catalog items.

The syntax of filter expressions is described in §5.5.1.31.

If both a query and a filter are specified, the filter does not contribute to the computed scores.

5.5.1.28 SearchArticleParameterSet

Synopsis:

struct SearchArticleParameterSet : BasicSearchParameterSet{
 string *brandId;
 string *manufacturerId;
 string *seriesId;
 string *basArticleNumber;
 VarCodeType *varCodeType;
 string *variantCode;
}

The complex type SearchArticleParameterSet is derived from BasicSearchParameterSet.

All fields are optional attributes. The default value (used if the field is not present) is an empty string, except
for varCodeType, where it is None.

5.5.1.29 Index Construction

EAIWS constructs one index database for each catalog (the set of catalog packages referenced by a data or
catalog profile).

The current implementation constructs the index the first time a search is performed on a catalog, and keeps
the index database in memory.

During indexing, one index item (document in Lucene lingo) is created for each structure item or catalog item
of the catalog database (the internal catalog database uses a format very similar to the OAS 2.0 format).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 91 of 298

EAIWS 4.16

However, no index item is created if

• A catalog item has no text ID. A catalog item has a text ID if the text table contains at least one text
record for the catalog item.

• A structure item has no text ID and does not reference a catalog item with a text ID.

Each index item has multiple fields. A field consists of field name and text. Depending on the field type
(implied by the field name) the text is treated as a single token or split into multiple tokens.

Since the index database uses an inverted index, the tokens are not stored in the index item. Instead, and
somewhat simplified, the index stores, for each token encountered, a list of index item IDs of all index items
whose fields contain the token and, in case of tokenized text, the position of the token in the text.

The following list describes the field names currently used. Field names starting with an underscore are
internal field names not available in filter expressions. They are described here for a better understanding of
how queries work.

ban

The base article number. Each index item that represents an article contains one instance of
this field.

series

The commercial series ID. Each index item that represents an article contains one instance
of this field unless the series ID stored in the catalog database is empty.

catpkg

The catalog package ID. Each index item contains one instance of this field. The catalog
package ID has the format '::<manu>::<prog>::<version>/<region>'.

Artpkg

The article package ID. Each index item that represents an article contains one instance of
this field. The article package ID is the ID of the OFML package that contains the article
data. The format of the article package D is '::<manu>::<prog>::<version>/<region>'.

Descriptor

An OAS descriptor ID. Each index item for a catalog item, and each index item for a
structure item referencing a catalog item, has one instance of this field for each descriptor
assigned to the catalog item.

category

An OAS category ID. Each index item for a catalog item, and each index item for a structure
item referencing a catalog item, has one instance of this field for each category assigned to
the catalog item, and for each direct and indirect base category of this category.

_text@<language>

A text from the text table. For each text purpose found for a particular structure or catalog
item, and each language tag from the set of language tags found anywhere in language
fields of the catalog database, the corresponding text is determined and, if not empty, an
instance of this field, with the language encoded in the field name and the tokenized text
used as the field text, is added to the index item.

_keyword@<language>

A synonym from the synonym table. For each descriptor assigned to the catalog item
(referenced by the structure item), and for each language tag from the set of language tags
found anywhere in language fields of the catalog database, all synonyms for the descriptor
matching the language tag are determined, and for each such synonym an instance of this
field, with the language encoded in the field name and the tokenized synonym used as the
field text, is added to the index item.

Tokenization of text and keyword fields is language dependent. Right now, in most cases the same
algorithms are used as provided by the language specific analyzers of Lucene, with one exception in case of
German languages.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 92 of 298

EAIWS 4.16

In general, tokenization first splits the input text using Word Break rules from the Unicode Text Segmentation
algorithm. The individual tokens are then converted to lower case. Words that carry no meaning (like 'a' and
'the' in English) are removed then.

Finally, a stemming algorithm is applied to reduce words to their word stem. The resulting tokens are then
added to the index. For some languages there are additional steps that transform the tokens.

For German languages a compound word token filter has been added that attempts to split compound words
into their parts (like 'Drehstuhl' into 'Dreh' und 'Stuhl', or possibly just 'Stuhl'). This is necessary to make sure
that a search for 'Stuhl' also finds 'Drehstuhl'.

5.5.1.30 Query Syntax

Note: The following text is a slightly modified copy of the documentation of the 'SimpleQueryParser' class of
Lucene.

The current implementation uses the 'SimpleQueryParser' of Lucene to parse the query. The main idea
behind this parser is that a person should be able to type whatever they want to represent a query, and the
parser will do its best to interpret what to search for no matter how poorly composed the request may be.
Tokens are considered to be any of a term, phrase, or subquery for the operations described below. White
space including ' ', '\n', '\r' and '\t' and the operators '(', ')', '+', '|' and '"' may be used to delimit tokens.
Any errors in query syntax will be ignored and the parser will attempt to decipher what it can; however, this
may mean odd or unexpected results.

Query Operators

 '+' specifies AND operation: token1+token2

 '|' specifies OR operation: token1|token2

 '-' negates a single token: -token0

 '"' creates phrases of terms: "term1 term2 ..."

 '*' at the end of terms specifies prefix query: term*

 '~N' at the end of terms specifies fuzzy query: term~1

 '~N' at the end of phrases specifies near query:

 "term1 term2"~5

 '(' and ')' specifies precedence: token1 + (token2 | token3)

The default operator is OR if no other operator is specified. For example, the following will OR token1 and
token2 together:

 token1 token2

Normal operator precedence will be simple order from right to left. For example, the following will evaluate
token1 OR token2 first, then AND with token3:

 token1 | token2 + token3

Escaping

An individual term may contain any possible character with certain characters requiring escaping using a '\'.
The characters '+', '|', '"', '(', ')', ''' and '\' will need to be escaped in terms and phrases.

The '-' operator is a special case. On individual terms (not phrases) the first character of a term that is '-'
must be escaped; however, any '-' characters beyond the first character do not need to be escaped. For
example:

 -term1 -- Specifies NOT operation against term1

 \-term1 -- Searches for the term -term1.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 93 of 298

EAIWS 4.16

 term-1 -- Searches for the term term-1.

 term\-1 -- Searches for the term term-1.

The '*' operator is a special case. On individual terms (not phrases) the last character of a term that is '*'
must be escaped; however, any '*' characters before the last character do not need to be escaped:

 term1* -- Searches for the prefix term1

 term1* -- Searches for the term term1*

 term*1 -- Searches for the term term*1

 term*1 -- Searches for the term term*1

Searched Fields and their Weights

The query constructed from the query expression searches in the 'ban', '_text@<language>' and
'_keyword@<language>' fields, where <language> is the first language from the list of languages specified
by the lookup options (or the effective catalog languages if the lookup options to not specify any languages)

that is supported by the catalog database.

The fields are weighted differently so a match found in the 'ban' field is rated higher than a match found in the
'_keyword@...' field, which in turn is rated higher than a match found in the '_text@...' field. The weights
currently assigned to the fields are as follows:

 'ban' -- 5

 '_keyword@...' -- 2

 '_text@...' -- 1

5.5.1.31 Filter Expression Syntax

Character sequences within '<' and '>' are non-terminals. Character sequences within single quotes are
regular expressions representing terminals/tokens. The regular expression syntax is that of POSIX extended
regular expressions with the following additional character classes:

 [:White_Space:] Unicode code points with property White_Space

 [:ID_Start:] Unicode code points with derived core property

 ID_Start. For the US-ASCII subset, this are all

 upper and lower case letters.

 [:ID_Continue:] Unicode code points with derived core property

 ID_Continue. For the US-ASCII subset, this are

 all upper and lower case letters, the decimal

 digits, and the underscore.

White space between tokens is optional and can be omitted unless it is necessary to delimit tokens. This is
the case if

• the first token ends and the second token starts with a character belonging to the [:ID_Continue:]
character class, or

• to terminate <non-white-space-character-seq> (except at the end of the filter expression).

Furthermore, there must be no white space between <field-name> and <term-text> (in other words, there
must be no white space before and after the delimiting colon).

<filter-expression> ::= <expression>

<expression> ::= <or-expression>

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 94 of 298

EAIWS 4.16

<or-expression> ::= <and-expression>

 | <or-expression> 'OR' <and-expression>

<and-expression> ::= <unary-expression>

 | <and-expression> 'AND' <unary-expression>

<unary-expression> ::= <primary-expression>

 | 'NOT' <unary-expression>

<primary-expression> ::= <term>

 | '\(' <expression> '\)'

<term> ::= <field-name> ':' <term-text>

<field-name> ::= '[[:ID_Start:][:ID_Continue:]*]'

(informal: A Unicode identifier (see UAX#31, definition D1.), starting with an [:ID_Start:] character
followed by zero or more [:ID_Continue:] characters.)

<term-text> ::= <string-literal>

 | <non-white-space-character-seq>

<string-literal> ::= '"[^"]*(""[^"]*)*"'

 | '\'[^\']*(\'\'[^\']*)*\''

(informal: A sequence of characters within quote characters, where the sequence of characters does
not contain an odd number of consecutive quote characters. The quote character is either a double
quote or a single quote.)

<non-white-space-character-seq> ::= '[^[:White_Space:]]+'

(informal: A non-empty sequence of non-white-space characters.)

'OR', 'AND' and 'NOT' represent the usual logical operations. The operands are boolean values, and the
result is a boolean value.

'NOT' has the highest precedence, 'OR' the lowest. Expressions enclosed in parenthesis can be used to
override the precedence rules. Thus, 'foo:a OR NOT bar:b AND baz:c' is the same as 'foo:a OR ((NOT bar:b)
AND baz:c)'.

The result of the <term> sub-expression is a boolean value. For a particular index item the result of a <term>
sub-expression is true if and only if the index item has a field with the specified name and its text matches
the specified term text.

Filter expressions may use any field name allowed by the syntax above, no matter whether the field name is
actually used by the index. See above (Index Construction) for a description of field names used by the
index.

If the 'WildcardsInFilter' flag is not set, the term text matches if it is exactly identical (including case).

If the 'WildcardsInFilter' flag is set, the characters '*', '?' and '\' have special meaning. The backslash is used
as a escape character. The escape character must be followed by one of these special characters and
removes their special meaning. The '?' character matches any single character, and the '*' character matches
any (possibly empty) sequence of characters.

Note that the use of wildcards may result in slow queries, as the search engine must iterate over many
terms. In order to prevent extremely slow queries, the term text not start with '*'.

Synonym

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 95 of 298

EAIWS 4.16

Synopsis:

struct Synonym {
 string name;
 string language;
 boolean isStandard;
}

language

language is a language tag representing the language of the synonym (e.g. 'de-DE') or an empty
string in case of the undetermined language.

isStandard

isStandard, if true, identifies this synonym as the standard synonym that should be preferred over
other synonyms of the same descriptor.

name

The element name contains the name of the synonym (i.e. the actual synonym).

5.5.1.32 TopCatalogItems

Synopsis:

struct TopCatalogItems {
 ScoredCatalogItem[] scoredItems;
 int totalHits;

 }

An element of this type is used as the return value of the search operation to return the total number of
matching catalog items and (a subset of) the matching catalog items.

5.5.1.33 VarCodeType

Synopsis:

enum VarCodeType {
 None,
 Manufacturer,
 OFML
}

The type of the variant code stored in an article catalog item. See the OAS specification for more information.

None

The article should be created in its initial configuration.

Manufacturer

The variant code of this article is based on a manufacturer defined scheme.

OFML

The variant code is based on a manufacturer neutral scheme. It corresponds
to the predefined OCD code scheme KeyValueList.

5.5.1.34 SearchResourceParameterSet

Synopsis:

SearchResourceParameterSet extends BasicSearchParameterSet (
string value
string catalogPackageId,
string language,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 96 of 298

EAIWS 4.16

string resourceType
)

5.5.2 Faults

5.5.2.1 CatalogServiceFault

Synopsis:

struct CatalogServiceFault {
 string* message;
}

A CatalogServiceFault is returned by operations of the catalog service in case of errors the Online Con-
figurator was prepared to detect and deal with (i.e. to recover cleanly).

5.5.3 Operations

5.5.3.1 getPackageInfo

Synopsis:

PackageInfo[] getPackageInfo(
SessionId sessionId,
string[] manuIds,
PackageId[] packageIds,

GetPackageInfoOptions? options
)

throws CatalogServiceFault;

Arguments manuIds and packageIds must be possibly empty sequences of valid OFML manufacturer IDs
and package IDs. Invalid IDs cause the operation to terminated with a CatalogServiceFault.

If both sets of IDs are empty the operation returns information about all registered packages. Otherwise it
returns information about all packages whose OFML manufacturer ID matches one of the given OFML
manufacturer IDs or whose package ID partially matches one of the given package IDs. Two package IDs
match partially if the fields present in both package IDs are equal.

The options argument controls what data is returned for selected packages. All fields of
GetPackageInfoOptions are optional. If no instance of GetPackageInfoOptions is passed to getPackageInfo
the operation behaves as if an empty instance has been passed, i.e. an instance with all fields unspecified.

The following options are supported by operation getPackageInfo:

allData - Controls the default value of all other options except useManufacturerConfig. The default value of
allData itself is false.

allLanguages - If true, all available translations are returned. If false, only one translation is returned. The
returned translation depends on the current list of effective project languages. The lang field of returned
instances of DisplayText is not present, i.e. there is no information which translation has been selected.

useManufacturerConfig - Controls whether or returned manufacturer name, distributor name and copyright
may originate from the manufacturer configuration file for the package's manufacturer. The default value of
this option is false.

If useManufacturerConfig is true and allLanguages is false, the operation tries to fetch the name/text from the

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 97 of 298

EAIWS 4.16

manufacturer configuration if no non-empty text is found for the package.

If both useManufacturerConfig and allLanguages are true, the language-to-text mapping of the package is
augmented with entries from the manufacturer configuration's language-to-text mapping (package entries
take precedence).

All other options control whether corresponding fields (i.e. fields with the same name) are present in returned
instances of PackageInfo.

With a few exceptions field names of PackageInfo are based on the names of DSR keys, with underline
followed by a lower case letter replaced by the corresponding upper case letter. Exceptions are:

packageId - There is no DSR key package_id. Instead, the package ID is composed of the values of DSR
keys manufacturer, program, version, and distribution_region. Consequently, there are no fields in
PackageInfo that correspond to these DSR keys.

seriesIds - The corresponding DSR key is program_id.

dependencies - The corresponding DSR key is depend.

priceProfileRegionId - The corresponding DSR key is ppr_region_id.

globalTradeItemNumber - The corresponding DSR key is gtin_id.

Sequence fields are encoded as a single element whose name is equal to the field's name. The element
contains one XML element for each sequence element. The nested XML element's name is the singular form
of the field name, except for sequences of type DisplayText[], which use text.

5.5.3.2 setLanguages

Synopsis:

void setLanguages(
SessionId sessionId,
string[] languages,
SetLanguagesMode mode
)

 throws CatalogServiceFault;

This operation sets the language list of the catalog service (the catalog languages) to the specified, possibly
empty list of ISO 639 alpha-2 language codes. It then augments23 this list with the language of the current
locale to build an effective list of catalog languages. The effective list of catalog languages is updated after
each invocation of the session service’s setLocale operation to reflect possible changes to the locale lan-
guage.

Natural language texts are returned in the first language from the list of effective catalog languages suppor-
ted by the catalog database. In case the catalog database does not support any of the listed languages then
the Online Configurator returns the text in the first language found.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
The languages will be changed for the whole session including all projects loaded in the session.

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The languages parameter contains an invalid language code24.

23 The locale language is appended to the list if it is not already part of the list.
24 A language code is accepted as long as it consists of two lower case ASCII letters. It must not necessarily be defined by ISO 639.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 98 of 298

EAIWS 4.16

5.5.3.3 getLanguages

Synopsis:

string[] getLanguages(SessionId sessionId) throws CatalogServiceFault;

This operation queries the current list of catalog languages as set by the setLanguages operation. If the
setLanguages operation has not been invoked yet then the list of catalog languages is empty.

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.5.3.4 lookupArticle

The operation lookupArticle has been deprecated. Clients should use the new operation
searchArticle instead.

Synopsis:

CatalogItem[] lookupArticle(
string sessionId,
string manuId,
string seriesId,
string baseArtNr,
string varCode,
LookupOptions options

5.5.3.5 searchArticle

Synopsis:

TopCatalogItems searchArticle(SessionId sessionId,
 SearchArticleParameterSet search,
 LookupOptions options)

 throws CatalogServiceFault;

The operation searches a set of catalogs for articles items matching the given manufacturer and series IDs
and base article number.

The return value consists of the total number of hits found for the specified search parameters, and a
sequence of scored catalog nodes, sorted in descending order according to the score.

If no catalog ID is specified and the brand and manufacturer Ids are empty, or the base article number is
empty, the total number of hits is zero.

Otherwise, the operation determines the set of catalogs to search as follows: If search.catalogIds
contains at least one catalog ID, these catalogs are used. Otherwise, all catalogs matching the brand and
manufacturer IDs, if specified, are used.

The operation then iterates over all catalogs, looking for all catalog items matching the specified base article
number. The list of matching items is then filtered as follows:

• If the catalog item contains a non-empty manufacturer ID (OAS), and the search parameters contain
a different non-empty manufacturer ID, the item is ignored.

• If the search parameters contain a non-empty series ID and the catalog item contains a non-empty
series ID (OAS), the item is ignored if both IDs are not equal.

• If the search parameters contain a non-empty series ID and the catalog item contains no (or an
empty) series ID, the catalog item is ignored if the article package identified by the catalog item (the
package containing the product data of the article) does not contain articles of the specified series
(according to the DSR file).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 99 of 298

EAIWS 4.16

• If the visibility flags of the catalog item are not compatible with the display mode specified by
options.displayMode, the catalog item is ignored.

• Then, each remaining catalog item may be replaced, depending on the flags ViewItems and
CatalogItems in search.flags, and the views specified in search.views, as follows:

• If ViewItems is set, or CatalogItems is not set:

All view items referencing the catalog item are determined. (view items are (leaf) nodes of a catalog
tree/view). There may be multiple view items, either because the catalog item is referenced from
multiple locations in the same catalog tree/view, or because there are multiple catalog views (OAS).
It is also possible that there are no view items at all if the catalog item is not referenced by any
catalog view.

Then, if search.views is not empty, the name of the view containing each view item is determined,
and the view item is ignored if the view name is not found in search.views.

If neither ViewItems nor CatalogItems is set:

If the list of view items determined above is non-empty, the catalog item is replaced by the view
items. Otherwise, the catalog item is retained.

• If only ViewItems is set:

The catalog item is always replaced by the (possibly empty) list of view items.

• If only CatItems is set:

No replacement takes place.

• If both ViewItems and CatalogItems are set:

The possibly empty list of view items is inserted in front of the catalog item. The catalog item is
always retained.

Then, for each view and catalog item remaining, a score is computed based on the comparison of the variant
code of the item and the variant code given in search.variantCode. The exact algorithm used to
compare both variant codes is unspecified and subject to change.

Once the scores have been computed, the item list is sorted according to the scores in descending order.

Finally, the operation returns the total number of items, and a sub-sequence of the sorted list of items,
starting with the item whose index is given by search.firstHitPosition (default value is zero). The
maximum number of items returned is given by search.numberOfHits (default value is ten).

5.5.3.6 getCatalogItem

Synopsis:

CatalogItem getCatalogItem(SessionId sessionId,
 string[] path,

 LookupOptions[] options)
 throws CatalogServiceFault;

The getCatalogItem operation returns information about the catalog item represented by the path para-
meter. The path must be built from catalog node names, which are returned by catalog service operations as
the value of the name field of the CatalogItem structure.

The sessionId parameter must identify an open session. It is used to reference a session configuration
which determines the set of available manufacturer catalogs and the language used for human readable
texts returned by operations of the catalog service.

The path references the desired catalog item. If a path consists of n catalog item names cin1 to cinn, then
the path references the catalog item with name cinn that is a child item of the item referenced by the path

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 100 of 298

EAIWS 4.16

consisting of the catalog item names cin1 to cinn-1. A path consisting of a single catalog item name references
the root item25 of a manufacturer catalog.

The path may reference a catalog item of any type.

The LookupOptions argument is used to select the resources to be returned in the returned
CatalogItem (§5.5.1.35.5.1.31). See §5.5.1.14 for more information.

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The path parameter is empty.
• The first element of the path parameter does not identify a manufacturer catalog registered for the

session identified by the sessionId parameter.
• The path does not reference a catalog node.
• At least one node traversed by the path, or the final node referenced by the path, not visible accord-

ing to the displMode and insModes parameters.
• There was an error accessing the catalog database.

5.5.3.7 listCatalogItems

Synopsis:

CatalogItem[] listCatalogItems(SessionId sessionId,
 string[] path,

 LookupOptions[] options)
 throws CatalogServiceFault;

The listCatalogItems operation returns information about all child items of the catalog item represented
by the path parameter. The path must be built from catalog node names, which are returned by catalog ser-
vice operations as the value of the name field of the CatalogItem structure.

The sessionId parameter must identify an open session. It is used to reference a session configuration
which determines the set of available manufacturer catalogs and the language used for human readable
texts returned by operations of the catalog service.

The path references the catalog item whose child items will be returned. If a path consists of n catalog item
names cin1 to cinn, then the path references the catalog item with name cinn that is a child item of the item
referenced by the path consisting of the catalog item names cin1 to cinn-1. A path consisting of a single cata-
log item name references the root item26 of a manufacturer catalog. An empty path does not actually refer-
ence a catalog item, but can be used to list all the catalog items representing manufacturer catalogs.

The path may reference a catalog item of any type.

The LookupOptions argument is used to select the resources to be returned in the resources field of re-
turned instances of CatalogItem (§5.5.1.31). See §Fehler: Verweis nicht gefunden for more information.

The operation returns a sequence of catalog items, where each catalog item represents a visible child of the
catalog item referenced by the path. If the referenced catalog item has no child items, then the sequence of
returned catalog items is empty. This may be the case if

• the path references an empty folder,
• the path references a non-empty folder with no visible catalog items (all child items are hidden due to

the displMode and insModes parameters),
• the path references an article or information item, which by definition does not have child items.

25 With the current implementation, one manufacturer catalog consists of one or more XCF catalogs. The root item of the manufacturer
catalog is the parent of the root items of the XCF catalogs combined by this manufacturer catalog.

26 With the current implementation, one manufacturer catalog consists of one or more XCF catalogs. The root item of the manufacturer
catalog is the parent of the root items of the XCF catalogs combined by this manufacturer catalog.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 101 of 298

EAIWS 4.16

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The first element of a non-empty path parameter does not identify a manufacturer catalog re-
gistered for the session identified by the sessionId parameter.

• The path does not reference a catalog node.
• At least one node traversed by the path, or the final node referenced by the path, not visible accord-

ing to the displMode and insModes parameters.
• There was an error accessing the catalog database.

5.5.3.8 searchCatalogItems

Synopsis:

TopCatalogItems searchCatalogItems(SessionId sessionId,
 SearchParameterSet search,

 LookupOptions *options)
throws CatalogServiceFault;

The operation combines the search parameters specified by the search argument with the languages,
display mode and item types specified with the optional options argument to construct a query that is
evaluated against the search index of the catalog identified by the catalog ID specified as part of the search
parameter set.

The default set of languages is equal to the set of effective catalog languages. The default display mode is
Configuration, and the default item types are Folder, Article and Information.

The result of the operation consists of the total number of catalog items matching the query, and a scored list
of catalog items, with better matches coming first.

Note that the notion of catalog items used by the web service is not the same as the notion of catalog items
used by OAS. Web service catalog items represent both OAS structure and catalog items. In case of XCF,
there is no distinction between structure and catalog items.

It is only possible to search ofer multiple catalogs as long as the brands of all catalogs (usually equal to the
OFML manufacturer name) belong to the same concern.

5.5.3.9 setPreferredIconSize

Synopsis:

void setPreferredIconSize(SessionId sessionId, int size)
 throws CatalogServiceFault;

The setPreferredIconSize operation can be used to tell the Online Configurator about the preferred
icon size of the client. The Online Configurator interprets the size parameter as a hint. There is no guaran-
tee that the icon URL returned as part of the CatalogItem structure references an image of the specified
size.

The current implementation of the Online Configurator interprets the size parameter as follows: If the pre-
ferred icon size has not been explicitly set, or has been set to zero, then the base name of the image direct-
ory is image. Otherwise (if the preferred icon size has been set to a positive value), the name of the icon dir-
ectory is the concatenation of image, the dot character (.), and the requested icon size, formatted as a
decimal integer consisting of at least four decimal digits (the necessary number of zeros (0) is prepended if
the preferred icon size is less than one thousand).

Furthermore, if $data is the data directory of the catalog package, manu, prog, DR, and n are the OFML
manufacturer, program, distribution region and major version number of the catalog package, and $image is
the base name of the image directory as selected above, then the Online Configurator uses
$data/manu/prog/DR/n/$image as the directory containing the image files for catalog items of this cata-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 102 of 298

EAIWS 4.16

log package.

If this image directory exists, then the Online Configurator returns an icon URL as part of the CatalogItem
structure that references the icon file (whose base name is read from the catalog database) within the image
directory. If the image directory does not exist27, the Online Configurator returns an empty string instead.

Note: By convention, the maximum of width and height in pixels of each icon image stored in an image dir-
ectory for a particular preferred icon size should be equal to the preferred icon size.

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The size parameter is negative.

5.5.3.10 getPreferredIconSize

Synopsis:

int getPreferredIconSize(SessionId sessionId)
 throws CatalogServiceFault;

The getPreferredIconSize operation returns the preferred icon size assumed by the Online Configur-
ator. The operation returns zero if the preferred icon size has not been previously set by an successful invoc-
ation of the setPreferredIconSize operation. Otherwise, the operation returns the value of the size ar-
gument from the last successful invocation of the setPreferredIconSize operation for the same session.

A CatalogServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.5.3.11 getDescriptorIds

Synopsis:

 String[] getDescriptorIds(SessionId sessionId,
 string catalogId,

 DescriptorType descrType)
 throws CatalogServiceFault;

The operation returns the IDs of descriptors of the given type found in the catalog database of the catalog
specified by the given catalog ID. If descrType is Category then only the IDs of top categories are
returned. For all other descriptor types (except Undefined, which results in a fault) the IDs of all descriptors
of this type are returned.

5.5.3.12 getItemDescriptors

Synopsis:

ItemDescriptor[] getItemDescriptors(SessionId sessionId,
string catalogId,
string[] descrIds,
LookupOptions *options)

 throws CatalogServiceFault;

The operation returns information about the descriptors identified by the descriptor IDs listed with the
descrIds parameter. If one of these descriptor IDs does not identify a descriptor, the operation fails.

Most lookup options, if specified, are ignored. The only lookup options that are used are languages,
subCategories and synonyms.

27 Whether or not the icon file itself exists has no effect.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 103 of 298

EAIWS 4.16

The languages option may be used to select the language of returned synonyms. Synonyms are returned if
the synonyms option is true. Sub-categories of categories are returned if the subCategories option is
true.

Deviating from other operations, the default value of the subCategories and synonyms options is true.

While the current implementation returns the descriptor information in the order of the descriptor IDs passed
to the operation, this behavior should not be taken for granted.

Note that the actual type returned for category descriptors is ItemCategory, which is an extension of
(derived from) ItemDescriptor.

5.5.3.13 getCatalogPath

Synopsis:

String[] getCatalogPath(SessionId sessionId,
string catalogId,
string catNodeKey)

throws CatalogServiceFault;

Get the catalog path for a pair of catalog ID and node key.

The operation returns an empty path if the specified catalog does not contain a structure item with the
specified node key. This may happen for node keys returned by the catalog search for non-folder items as
such items may or may not be referenced from the catalog structure (tree).

 The operation fails with a CatalogServiceFault if

• If the session ID is not a valid UUID, there is no session with the given UUID or the session is
currently suspended and could not be resumed.

• The catalog ID is not a syntactically correct catalog ID or there is no catalog with the given ID.

• The catalog node key is not syntactically correct.

• There was an error accessing the catalog database.

5.5.3.14 searchResource

Synopsis:

TopCatalogItems searchResource(
string sessionId,
SearchResourceParameterSet search,
LookupOptions options
)

5.6 Basket Service

5.6.1 Type Definitions

5.6.1.1 AddStateCode

Synopsis:

struct AddStateCode extends string (
string domain
)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 104 of 298

EAIWS 4.16

5.6.1.2 ArticleDescription

Synopsis:

struct ArticleClassification (
string system,
string? Qualifier,
string classId,
DisplayText[]? description

)

5.6.1.3 ArticleDescription

Synopsis:

struct ArticleDescription (
DisplayText[] shortText,
DisplayText[] longText,
DisplayText[] featureText

)

5.6.1.4 AttachmentMode

Synopsis:

enum AttachmentMode {
None,
Item,
Composite,
TryComposite
 }

None

The newly inserted article is not attached to an existing composite article, i.e. it is inserted as a
stand-alone article. This is the traditional and default behavior.

Composite

Insert the new OFML article into a composite article. The fatherId passed to the insertOFMLArticle
operation must identify a basket article item (i.e. an item with item type Article, Aggregate or
PartialPlanning). The insert procedure determines a list of basket article items to consider as parents
(in the composite article hierarchy) for the new article item, consisting of all items from the specified
basket article item up to the root of the composite article hierarchy, both inclusive, in that order. It
creates the new article as a sub-article of the first article item from the list whose item type is either
Aggregate or PartialPlanning, and that accepts the new article as its sub-article (i.e. checkAdd() of
the corresponding OFML article returned an insert position). The operation fails if no suitable parent
article has been found.

Item

Like Composite, but only try the first element of the list of possible parents (if the item type of the first
element, i.e. the item specified by fatherId, is Article, the insert operation will always fail).

TryComposite
Like Composite, but (try to) insert the new article as a stand-alone article if it can not be inserted as
part of the composite article.

5.6.1.5 BItemId

Synopsis:

typedef UUID BItemId;

The basket service maintains a tree structure of basket items for each session. Each item, that is node, of

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 105 of 298

EAIWS 4.16

the tree is identified by a basket item ID. Basket item IDs are UUIDs. The Online Configurator web services
use strings to pass UUIDs between client and server (§5.2.1).

5.6.1.6 BasketConfig

Synopsis:

struct BasketConfig (
string[] viewIds,
string[] columnIds
string defaultView,
boolean columnsEditable,
string currency,
boolean currencyEditable,
date defaultPriceDate

)

defaultView

The ID of the default view. The default view is the view that is initially displayed by P-BK after the
project has been loaded.

columnsEditable

A boolean value that indicates whether or not columns may be added to or removed
from the current basket. For now the value of this attribute will always be
true.

currency

The currency used by the basket. This is the same currency as returned by operation getCurrency.

currencyEditable

A boolean value that indicates whether or not the currency of the current basket can be changed1.

viewIds

A list of IDs of views of the current basket. This list should always contain the ID of the standard view
(5726009a-756d-11d6-9c21-00e029099a4b). The standard view uses display mode Planning and set-article
mode Expand. It contains the following columns, in that order: position number, manufacturer, series, article
number, description, quantity, single net price, total net price.

columnIds

A list of IDs of columns that have been added to the current basket. This list should always contain the
following list of standard column IDs2:

69ec3fa0-795a-11d6-9c21-00e029099a4b manufacturer
6d302258-795a-11d6-9c21-00e029099a4b series
71803794-795a-11d6-9c21-00e029099a4b article number
745802e4-795a-11d6-9c21-00e029099a4b description
76eda34c-795a-11d6-9c21-00e029099a4b quantity
7d21a60a-795a-11d6-9c21-00e029099a4b single purchase price
7fe484fc-795a-11d6-9c21-00e029099a4b total purchase price
82efa014-795a-11d6-9c21-00e029099a4b single sales price
8541eb1a-795a-11d6-9c21-00e029099a4b total sales price
8831eeec-795a-11d6-9c21-00e029099a4b single net price
8b51fbe4-795a-11d6-9c21-00e029099a4b total net price
8dcf0592-795a-11d6-9c21-00e029099a4b single gross price
90895bc0-795a-11d6-9c21-00e029099a4b total gross price
81d12edc-853a-11d6-9c21-00e029099a4b position number
9c9ea8ea-20ce-11d7-9c21-00e029099a4b catalog image
6a66160c-da62-11d8-b9d6-00e081513ada generated image
73bd68f4-da62-11d8-b9d6-00e081513ada article image

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 106 of 298

EAIWS 4.16

5.6.1.7 BasketItemType

Synopsis:

enum BasketItemType {
 Undefined,
 Folder,
 Article,
 Aggregate,
 PartialPlanning,
 UserArticle,
 SetArticle,
 OCDArticle,
 Text
}

The BasketItemType enumeration is used to identify the type of each basket item. Each basket item has
one and only one type. The following enumeration values are defined:

Undefined

This value is reserved for occasions where the item type is unknown or undefined. An basket item
should never have this type.

Folder

A basket item of type Folder can be used to group other items (the children).

Article

A basket item of type Article represents an ordinary OFML article that cannot have sub-articles,
but can itself be a sub-article of an aggregate or partial planning.

Aggregate

A basket item of type Aggregate represents an OFML composite article that can have sub-articles
and can itself be a sub-article of another aggregate or partial planning. An aggregate usually starts
out as a single article without sub-articles, but allows sub-articles to be added though modification of
the aggregate’s properties.

PartialPlanning

Technically, a basket item of type PartialPlanning represents an OFML composite article similar
to an aggregate. However, a partial planning usually does not have an article number or a price and
therefore should be treated by the application more like a folder than an article. A partial planning
usually starts out with a single sub-article and allows the addition of further sub-articles through
modification of the partial planning’s properties.

UserArticle

An user article is the most primitive kind of article position. It cannot have sub-articles, nor can it be a
sub-article of an aggregate or partial planning. It is not backed by any kind of product data. Instead,
all properties of an user article (manufacturer and series IDs, article numbers, article texts, price, …)
must be set by the user (or another external agent) through the setItemProperties (§5.6.3.33)
operation.

SetArticle

A set article is a virtual article which encapsulates a set of real articles. Depending on the view, the
articles contained within a set article may be hidden. Regarding its properties, a set article behaves
more or less like an user article, except that the the default values of some properties (in particular
the price) depend on the articles contained within the set article.

OCDArticle

A basket item of type OCDArticle represents an article that only requires the OCD engine instead
of the full OFML runtime environment. An OCD article cannot have sub-articles, nor can it be the
sub-article of some form of composite article.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 107 of 298

EAIWS 4.16

Text

A basket item of type Text can hold text information.

5.6.1.8 BasketItem

Synopsis:

struct BasketItem {
 BItemId itemId;
 BasketItemType itemType;
 string label;
 BItemId[] subItemIds;
 BItemId mainArticleId;
 BItemId[] subArticleIds;
 BItemId[] setArticlePartIds;
 BItemId setArticleId;
 Base64URL geometryId;
 string positionNumber;
 BItemId[] basketItemIds;
 BasketItem[] basketItems;
}

Instances of BasketItem are returned by the getAllItems operation (§5.6.3.13) to provide basic (mainly
structural) information about the basket item. The structure has the following fields:

itemId

This field holds the UUID identifying the item.

itemType

This field holds the type of this item. See §5.6.1.7 for a description of possible item types.

label

Depending on the type of the item, this field either holds the label of a folder or the short text of an
article. The label of the top folder is empty because the root folder itself is not meant to be displayed
by the application.

subItemIds

This field is an possibly empty list containing the identifiers of all child items of this item. This is the
same list as returned by the getSubItemIds operation when invoked for the item identifier stored
in the itemId field.

mainArticleId

If this item is a sub-article in a hierarchy of composite articles, including the trivial case of a single
composite article, this field holds the identifier of the topmost aggregate or partial planning. In all
other cases this fields holds the NIL-UUID.

The field mainArticleId is not returned if the instance of BasketItem represents a view item.

subArticleIds

In case of a composite article (aggregate, partial planning), this field holds the possibly empty list of
IDs of direct sub-article items.

No sub-article item IDs are returned if the instance of BasketItem represents a view item.

setArticleId

This field is present in return values of operations getAllItems and pasteContainer if option
setArticleIds of these operations is true. If the basket item is part of a set-article, the attribute
contains the ID of the set-article. Otherwise it contains the NIL-UUID.

No set-article item IDs are returned if the instance of BasketItem represents a view item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 108 of 298

EAIWS 4.16

setArticlePartIds

This field is used in return values of operations getAllItems and pasteContainer if option
setArticleIds of these operations is true and the basket item is a set-article item. The field con-
tains the basket item IDs of directly referenced parts of the set-article (sub-article items of composite
articles are not listed, only the main article).

No set-article part IDs are returned if the instance of BasketItem represents a view item.

GeometryId

This field is used in return values of operations getAllItems and pasteContainer if option
geometryIds of these operations is true, the corresponding basket item represents an OFML art-
icle item, and the geometry ID is stored in the basket item28. If present, the field contains the non-
empty Base64URL-encoded geometry ID.

The geometry ID returned as part of type BasketItem is equal to the geometry ID returned by oper-
ation getItemProperties. It is supposed to be used to correlate basket items and geometry
nodes in GFJ files.

No geometry IDs are returned if the instance of BasketItem represents a view item.

positionNumber

This field is present if and only if operation getAllItems has been invoked for view items and op-
tion positionNumbers is effectively true. The position number of the view’s top folder is an empty
string. The position number of all other items consists of a dot-separated list of unsigned decimal
numbers.

basketItemIds

Basket item IDs are returned only if operation getAllItems has been invoked for view items and
option basketItems is effectively false.

Each view item references one or more basket items29. This field is used to return the basket item
IDs of all basket items referenced by the view item.

In most cases, a single view item references a single basket item. There are some cases, however,
where a view item may reference multiple basket items:

▪ merged article items (display mode Sorted with merge mode other than None)

The order of basket item IDs returned for merged article items is unspecified.

▪ sub-article items folded into their main article item (display mode Sorted with merge mode
Compact)

The list of basket item IDs consists of the item ID of the main article item followed by the item
IDs of sub-article items. The order of sub-article item IDs is unspecified.

▪ parts of collapsed set-articles

The list of basket item IDs consists of the item ID of the set-article item followed by the item
IDs of set-article parts. The order of set-article part IDs is unspecified. IDs of basket folder
parts are not returned if the view expands basket folder items.

basketItems

If operation getAllItems is invoked for view items and option basketItems is true then this
field is used to return one instance of BasketItem for each basket item referenced by the view
item. See description of field basketItemIds for information about the set of referenced basket
items.

Options setArticleIds and geometryIds may be used to control the content of these nested
instances of BasketItem.

Note that the composite article hierarchy defined by the main- and sub-article identifiers is not related in any

28 This should usually be the case unless the basket item has been read from a BSK/OBX stream produced by an application that does
not support geometry IDs.

29 In theory, there may be view items that do not reference basket items, but so far no such view items have been implemented.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 109 of 298

EAIWS 4.16

way to the visible item hierarchy defined by the top folder and sub-item identifiers. For one thing it is not un-
common for meta types to be configured in such a way that sub-articles of meta types appear as siblings of
the meta type in the order hierarchy. For another thing a future version of the Online Configurator may allow
more or less unrestricted reordering of the hierarchy of basket items.

5.6.1.9 CSArithmeticOperationError

Synopsis:

struct CSArithmeticOperationError extends CSValidationError (
CSOperationKind operationKind

)

A CSArithmeticOperationError is reported in case of division by zero (DivisionByZero), overflow, i.e. an
infinite result (Overflow), or an operation whose result is undefined for the particular parameter values, like
addition of positive and negative infinity, or multiplication of zero with infinity (InvalidOperation). Possible
values for operationKind are Add, Subtract, Multiply, Divide, Remainder, and UnitConversion.

5.6.1.10 CSConformabilityError

Synopsis:

struct CSConformabilityError extends CSValidationError (
CSOperationKind operationKind,

 string unit1,
 string unit2

)

A CSConformabilityError is reported to quantities with different units are added or divided, or if an attempt to
convert a quantity to a different unit failed because both units are not related. The error code is
ConformabilityError. Field operationKind is Add, Divide, or UnitConversion. Fields unit1 and unit2 are the
units involved. In case of operation UnitConversion, unit1 is the source unit and unit2 the target unit.

5.6.1.11 CSCurrencyError

Synopsis:

struct CSCurrencyError extends CSValidationError (
CSOperationKind operationKind,

 string currency1,
 string currency2

)

A CSCurrencyError is reported if an operation was performed on monetary values with different currencies
(CurrencyMismatch) or if a currency conversion failed (CurrencyConversionFailed or UnknownCurrency).
Field operationKind is Add, Subtract, Divide, Remainder, or CurrencyConversion. Fields currency1 and
currency2 are the currencies involved. In case of operation CurrencyConversion, currency1 is the source
currency and currency2 the target currency (usually the document currency).

5.6.1.12 CSErrorCode

Synopsis:

Restriction: string

enum CSErrorCode {
InconsistentItemState,
UnknownItemDataAccessError,
UndefinedValue,
InvalidValue,
InfiniteValue,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 110 of 298

EAIWS 4.16

NullValue,
PercentageExpected,
MonetaryValueExpected,
MonetaryBaseExpected,
QuantityBaseExpected,
UnknownValue,
UnknownCurrency,
CurrencyConversionFailed,
CurrencyMismatch,
ConformabilityError,
DivisionByZero,
Overflow,
InvalidOperation,
NoPreviousLine,
ReferencedLineNotFound,
NoInversePriceCalculation,
UndefinedInverseGroupConditionCalculation

 }

5.6.1.13 CSInvalidValueError

Synopsis:

struct CSInvalidValueError extends CSValidationError (
CSValueKind parameterKind
)

A CSInvalidValueError indicates an invalid parameter of an arithmetic or other operation. Field
parameterKind describes the parameter value, whereas resultKind describes the value computed by the
operation. Possible error codes are UndefinedValue (no value at all, i.e. a null reference), InvalidValue (like
an invalid monetary value, comparable with NaN), InfiniteValue, NullValue (a monetary value or quantity with
value zero but no currency or unit), PercentageExcpected (like a condition with calculation rule Percent but a
monetary amount), MonetaryValueExpected, MonetaryBaseExcpected, QuantityBaseExpected, and
UnknownValue (a general failure to determine a particular value, like the set-article quantity of an item that is
supposedly part of a set-article when the corresponding set-article calculation is not found).

5.6.1.14 CSItemDataAccessError

Synopsis:

struct CSItemDataAccessError extends CSValidationError ()

A CSItemDataAccessError indicates a failure to access data of the underlying basket article item. Possible
error codes are InconsistentItemState, indicating an inconsistency in the basket item structure, like a sub-
article whose main article could not be found, and UnknownItemDataAccessError, indicating an unknown
error. Field resultKind describes the value being accessed (like ItemQuantity or SalesUnitSize, among
others).

5.6.1.15 CSLineNotFoundError

Synopsis:

struct CSLineNotFoundError extends CSValidationError ()

A CSLineNotFoundError is reported if a calculation line that is supposed to be present is not found. This error
should not happen and indicates a bug or possibly a problem with the pricing procedure.

5.6.1.16 CSOperationKind

Synopsis:

Restriction: string

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 111 of 298

EAIWS 4.16

enum CSOperationKind {
Add,
Subtract,
Multiply,
Divide,
Remainder,
CurrencyConversion,
UnitConversion

 }

5.6.1.17 CSUndefinedOperationError

Synopsis:

struct CSUndefinedOperationError extends CSValidationError (
CalculationRule calculationRule

)

A CSUndefinedOperationError indicates an inability to perform an inverse computation (like during margin
adjustment) and is not reported by normal validation of price calculations.

5.6.1.18 CSValidationError

Synopsis:

struct CSValidationError (
string message

 CSValueKind resultKind,
 CSErrorCode errorCode

)

5.6.1.19 CSValueKind

Synopsis:

Restriction: string

enum CSValueKind {
Other,
ItemQuantity,
SalesUnitSize,
SalesUnitGrossWeight,
SalesUnitNetWeight,
SalesUnitVolume,
InactiveItemFlag,
SetArticleIdentifier,
CondRecordAmount,
Incoming,
Reference,
Outgoing,
CondBase,
ScaleBase,
CondAmount,
DefaultQtyRel,
QuantityRelation,
CondBaseQtyRelRatio,
CondValue,
SubtotalValue,
SetArticleQty,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 112 of 298

EAIWS 4.16

GroupCondBase,
AltGroupCondBase,
GroupScaleBase,
GroupAmount,
CondBaseRatio,
GroupValue,
GroupValueResidue,
AggrIncoming,
AggrReference,
AggrOutgoing,
AggrCondBase,
AggrCondValue,
AggrSubtotalValue,
AggrSetArticleQtys

 }

Values of this type are used in CSValidationError to identify the value whose computation triggered the error,
and in CSInvalidValueError to identify the origin of the offending value.

Other

Placeholder for other internally used value kinds that should not appear in validation errors reported
for price calculation sheets

ItemQuantity to SetArticleIdentifier

Values fetched from article items

CondRecordAmount

The amount of a condition record

Incoming

The incoming value of an item calculation line, i.e. the outgoing value of the parent line

Reference

The reference value of an item calculation line according to the reference level or reference range

Outgoing

The outgoing value of an item calculation line; equal to the incoming value in case of subtotal and
text lines, and equal to the sum of incoming value and condition value in case of condition lines

CondBase

The condition base used by item conditions with calculation rule Quantity, GrossWeight, NetWeight,
or Volume; computed as the product of the article's quantity and either the sales unit size, sales unit
gross/net weight, or sales unit volume; used by item conditions to compute the condition value as the
product of condition amount and the quotient of condition base and quantity relation (CV = CA *
(CB / QR)); accumulated by condition groups to compute the base value of the group

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 113 of 298

EAIWS 4.16

ScaleBase

Like CondBase, but used during computation of GroupScaleBase for item-specific intermediate res-
ults

CondAmount

The condition amount

DefaultQtyRel

The default quantity relation of an article item; equal to the article's sales unit size, sales unit gross/
net weight, or sales unit volume; used if the condition has no condition record and no manually spe-
cified quantity relation

QuantityRelation

The quantity relation used by item conditions with calculation rule Quantity, GrossWeight, NetWeight,
or Volume

CondBaseQtyRelRatio

The quotient of condition base and quantity relation

CondValue

The value of item conditions

SubtotalValue

The value of item subtotals

SetArticleQty

The quantity reported by set-article calculations

GroupCondBase

Base value of condition group, the sum of base values of all active conditions in the group

AltGroupCondBase

Alternative base value of condition groups used for inactive conditions (conditions overridden by a
subsequent price or conditions of inactive item calculations (alternative positions)) with calculation
rule FixedAmount; temporarily computed as the sum of group condition base and condition base
value; used instead of group condition base as to compute condition base ratio (see below)

GroupScaleBase

The scale base of a condition group; Depending on the scale base type, this is either the accumu-
lated item condition base (scale base type Value) or the accumulated item scale base (scale base
types Quantity, GrossWeight, NetWeight, or Volume).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 114 of 298

EAIWS 4.16

GroupAmount

Amount of a condition group; usually obtained from condition record, but may be manually overridden

GroupValue

The value of a condition group; computed from group amount and group base value

CondBaseRatio

The condition base ratio, i.e. the quotient of item condition base and group condition base; used to
compute the initial (before rounding difference compensation) item condition value as the product of
group value and condition base ratio

GroupValueResidue

The difference of group value and accumulated initial item condition values; may be distributed in
some way among item condition values if rounding difference compensation is enabled

AggrIncoming

The incoming value of an aggregate calculation line, i.e. the outgoing value of the parent line

AggrReference

The reference value of an aggregate calculation line according to the reference level or reference
range; may be used by aggregate subtotals in calculation of the value reported as the subtotal's
amount

AggrOutgoing

The outgoing value of an aggregate calculation line; equal to the incoming value in case of subtotal
and text lines, and equal to the sum of incoming value and condition value in case of condition lines

AggrCondBase

The aggregated condition base, i.e. the sum of item condition bases; used by group and set-article
calculations to determine whether the value of the aggregate condition is editable (for the value to be
editable, the aggregated condition base must have a finite non-zero value as it is used as divisor
when the new aggregate condition value is distributed among item conditions)

AggrCondValue

The value of aggregate conditions

AggrSubtotalValue

The value of aggregate subtotals

AggrSetArticleQtys

Mapping from item calculation ID to set-article quantity for items that are part of a set-article; used by
conditions of group and set-article calculations to determine whether their condition value is editable

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 115 of 298

EAIWS 4.16

5.6.1.20 ItemProperties

Synopsis:

struct ItemProperties {
 BItemId* itemId;
 BasketItemType* itemType;
 boolean* visible;
 boolean* expanded;
 string* label;
 BItemId* setArticleId;
 TMRow[] tmRows,
 string tmDescription,
 string positionNumber
 FolderProperties* folder;
 ArticleProperties* article;
 SetArticleProperties setArticle,
 ComposableGeometryProperties composableGeometry;
 ComposableGeometryProperties[] composableGeometries;
 TextItemProperties textItem;
}

The ItemProperties structure is used as the return value of the getItemProperties (§5.6.3.32) opera-
tion and as an argument type of the setItemProperties (§5.6.3.33) operation. Each field of this structure
(except the fields referencing another structure) corresponds to a basket item property.

itemId

This field holds the UUID identifying the item.

itemType

This field holds the type of this item. See §5.6.1.7 for a description of possible item types.

visible

This field indicates whether or not the item should be displayed in the article list. This field is not re-
turned for item properties of view items.

expanded

If false, the article list should show children of this item as sub-positions. If true, children of this
item should be displayed in place of this item (if visible is false), or as siblings following this item
(if visible is true). This field is not returned for item properties of view items.

label

This field contains the label for this item (the short text of article items or the name of folder items).

setArticleId

If this item is part of a set article (§5.6.1.7), this field contains the item ID of the set article. Other-
wise, it contains the null UUID (not a null reference).

positionNumber

This field is present if and only if operation getItemProperties has been invoked for view items.
The position number of the view’s top folder is an empty string. The position number of all other
items consists of a dot-separated list of unsigned decimal numbers.

folder

When used with the getItemProperties operation, this field contains a reference to an instance
of the FolderProperties (§5.6.1.21) structure if the corresponding basket item is a folder, and a
null reference otherwise. When used with the setItemProperties operation, the value of this field
is ignored if the item is not a folder item. If the item is a folder item, the field should contain a refer-
ence to an instance of FolderProperties.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 116 of 298

EAIWS 4.16

article

When used with the getItemProperties operation, this field contains a reference to an instance
of the ArticleProperties (§5.6.1.27) structure if the corresponding basket item is an article, and
a null reference otherwise. When used with the setItemProperties operation, the value of this
field is ignored if the item is not an article item. If the item is an article item, the field should contain a
reference to an instance of ArticleProperties.

composableGeometry

With the properties for composable geometry items, it is possible to compose individual item geo-
metries into a composite geometry. To do so, the items must be added as parts to a set-article, the
property enabled (§5.6.1.91) must be set to true, and the position and or rotation may be set. The
order of these operations does not matter.

The ID of the set-article can then be used with the operations getGeneratedImage
(§5.6.3.40) and getExportedGeometry (§5.6.3.43) to generate an image for or export the
geometry of the whole set-article.

Right now, the only set-article parts that can be used in this way are basket main article items.

Note that the use of set-article items with the aforementioned operations implies some restrictions
compared with ordinary article items:

• The Multi Content Picture export (or whatever MCP) means) is not supported.

• The GFX geometry export does not allow export of OBX data.

• The effective value of the 3D export option no2D should be true as the OFML object com-
posed for the set-article does not contain 2D geometries. If 2D geometries are to be expor-
ted, the export uses the GX hidden liner to produce 2D symbols, which may take some time.

In particular, this means that no2D=true should be used for the DWG export. For all other
exports allowing export of 2D geometries, the default value of this option is true anyway.

An empty string passed as item property composableGeometry.geometry of operation set-
ItemProperties resets the geometry assigned to user article items.

composableGeometries

This field is used instead of field composableGeometry if operation getItemProperties is in-
voked for view items instead of basket items30.

TextItem

When used with the getItemProperties operation, this field contains a reference to an instance
of the TextItemProperties (§5.6.1.30) structure if the corresponding basket item is a text item,
and a null reference otherwise. When used with the setItemProperties operation, the value of
this field is ignored if the item is not a text item. If the item is a text item, the field should contain a
reference to an instance of TextItemProperties.

While it is not an error to call the setItemProperties operation with an ItemProperties argument
whose folder or article field (whichever corresponds the the item type) contains a null reference, such a
call would be pointless as all the basket item properties corresponding to the other fields of the
ItemProperties structure are read-only.

tmRows

possible empty list of item text rows, always empty if option tmGetText (§ 5.6.3.76) is false or
missing, otherwise a list of all text rows, including those rows that do not have a text defined. If no
entry is found for a language from the prioritized list of effective product data languages the fallback
is the text stored for the undetermined language.

30 Field composableGeometry cannot be used in this case because view items may reference multiple basket items. Therefore, it
may be necessary to return more than one instance of ComposableGeometryProperties for a single view item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 117 of 298

EAIWS 4.16

tmDescription

The text-manager generated article description, see option tmDescrMode for more information. If no
entry is found for a language from the prioritized list of effective product data languages the fallback
is the text stored for the undetermined language.

5.6.1.21 FolderProperties

Synopsis:

struct FolderProperties {
 string* name,
 DisplayText[] displayName,
 DisplayText[]? longDisplayText
 boolean* showSubTotal,
}

The FolderProperties structure is referenced by the ItemProperties (§5.6.1.20) structure. The fields
of this structure correspond to basket item properties specific to folder items. The fields are as follows:

name

This field contains the name of the folder. When returned by the getItemProperties (§5.6.3.32)
operation, the value of this field is equal to the value of the label field of the ItemProperties
structure.

showSubTotal

This field indicates whether or not the article list should display a sub-total of the value of all posi-
tions contained within this folder.

5.6.1.22 GetArticleDataOptions

Synopsis:

struct GetArticleDataOptions (
boolean noProperties,
boolean fetchCatalogImage,
boolean fetchCatalogIcon,
string viewId
boolean separateCurrencies
)

noProperties

The noProperties option, if set to true, tells the operation not to fetch the articles properties. This may
be useful as fetching the properties may be slow, and they should not be necessary to display the list
of articles contained in the basket. Furthermore, if an article has been loaded from a project file
(§5.4.3.10), the operation may not be able to fetch the properties if the correct version of the article’s
product data is not available and will fail if the noProperties option is not set to true.

fetchCatalogImage

With the option fetchCatalogImage set to true, the operation getArticleData returns an URL for the
article’s catalog image, or an empty string if no catalog image has been found. The default value of
this options is true.

viewId

If this field is present its value must be empty, be the NIL UUID, or the ID of a current basket view.

If the field contains the ID of a current basket view then itemId parameter must contain the ID of an
item of that basket view and this item must reference a basket item. The operation will then behave
as if invoked for that basket item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 118 of 298

EAIWS 4.16

If the field is missing or contains an empty string or the NIL UUID then the operation will behave as
before.

5.6.1.23 GetArticleFeaturesOptions

Synopsis:

struct GetArticleFeaturesOptions (
boolean description,
boolean noInternal

)

5.6.1.24 GetMultiArticleFeaturesOptions

Synopsis:

 struct GetMultiArticleFeaturesOptions : ItemSelectionOptions
{

 boolean? description; // attribute
 boolean? noInternal; // attribute

}

Note: Fields description and noInternal of type GetMultiArticleFeaturesOptions are encoded
as attributes, even though the same fields of type GetArticleFeaturesOptions (§5.6.1.23) are encoded
as elements.

5.6.1.25 GetImagesOptions

Synopsis:

GetImagesOptions extends ItemSelectionOptions (
boolean useCache,
boolean generate,
boolean itemIds,
boolean attributes

)

useCache
If true, and the basket does not yet have a default article image representing the current configura-
tion, a global cache look-up will be done and, if a matching image is found there, it will be used.

The default value of this option is false.

generate
If true, and the basket does not yet have a default article image representing the current configura-
tion, a global cache look-up will be performed1 and, if no matching image is found there, an attempt
will be made to generate/render the image.

The default value of this option is false.

itemIds
If true, returned ImageInfo instances will contain the item ID of the corresponding basket or view
item.

The default value of this option is false.

attributes
If true, the attributes used to generate the image, or specified when the image was imported, are re-
turned as part of ImageInfo.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 119 of 298

EAIWS 4.16

For historical reasons, the names of these attributes differ from the names of the options passed to
operation getGeneratedImage. There are attributes that do not have a corresponding option, and op-
tions that are not stored as an attribute. Nevertheless, some of the attributes may be useful to the cli-
ent.

The default value of this option is false.

5.6.1.26 GetManufacturerInfoOptions

Synopsis:

struct GetManufacturerInfoOptions extends ItemSelectionOptions (
boolean allData,
boolean allLanguages,
boolean manufacturerName,
boolean seriesInfo,
boolean seriesName,
boolean manufacturerConfig,
boolean distributorName,
boolean copyright,
boolean address
)

5.6.1.27 ArticleProperties

Synopsis:

struct ArticleProperties {
 string* catalogId;

 string* manufacturerId;
 string* manufacturerName;
 string* seriesId;
 string* seriesName;

 string* manufacturer;
 string* program;
 string* distributionRegion;

 string* baseArticleNumber;
 string* finalArticleNumber;
 string* variantCode;
 string* ofmlVariantCode;
 boolean* useFinalArticleNumber;

 string* shortText;
 string* longText;
 string* featureText;
 ArticleDescriptionMode* descriptionMode;
 ArticleDescription productDescription,
 ArticleDescription userDescription,
 string currency,
 string purchaseCurrency,
 string salesCurrency,
 decimal purchasePrice,
 decimal salesPrice,
 boolean priceDateSupported,
 boolean priceDateEditable,
 date priceDate,
 decimal quantity,
 boolean alternativePosition,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 120 of 298

EAIWS 4.16

 string[] excludedCalculations,
 InactivePositionState[] inactivePositionState
 boolean inconsistencyFlag,
 string[] inconsistencyReason,
 PriceInfo priceInfo,
 PackagingInfo packagingInfo,

 boolean pseudoArticle,
 boolean? nonOfferArticle,
 boolean nonOrderArticle,
 ArticleClassification[] articleClassifications,

 OFMLUpdateState ofmlUpdateState,
 string geometryId,
 ArticleProperties[] subArticles,
 AddStateCode[] addStateCodes,

}
The ArticleProperties structure is referenced by the ItemProperties (§5.6.1.20) structure. The
fields of this structure correspond to basket item properties specific to article items. The fields are as follows:

catalogId

If the article is an OFML or OCD article, then this field contains the identifier of the catalog containing
the product data of the article if the catalog is represented by a catalog profile (as opposed to an old-
style manufacturer profile). See §5.5.1.31 for more information about catalog identifiers.

manufacturerId

This field contains the commercial identifier of the article’s manufacturer. When used with the
setItemProperties (§5.6.3.33) operation to set the properties of an user article or set article, this
field should contain either a null reference, an empty string or a valid manufacturer ID (see below).

manufacturerName

This field contains the name of the manufacturer. The manufacturer name depends on the manufac-
turer ID.

seriesId

This field contains the identifier for the article’s series. When used with the setItemProperties
(§5.6.3.33) operation to set the properties of an user article or set article, this field should contain
either a null reference, an empty string or a valid series ID (see below).

seriesName

This field contains the name of the article’s series. The series name depends on the manufacturer ID
and series ID.

Manufacturer, program, distributionRegion

The elements contain the OFML manufacturer, OFML program and OFML distribution region of the
package containing the OFML article data last used to insert or configure the OFML article.

Fields manufacturer and program should always be present in return value of operation
getItemProperties for items of type Article, Aggregate and PartialPlanning. Field
distributionRegion is usually present for items of these types unless the OFML article item has
been read from a BSK/OBX stream and the corresponding <pdInfo> element did not have attribute
region.

baseArticleNumber

This field contains the base article number.

finalArticleNumber

This field contains the final article number.

variantCode

This field contains the variant code.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 121 of 298

EAIWS 4.16

ofmlVariantCode

This field contains the OFML variant code of the OFML article. Other than the ordinary variant code,
the OFML variant code always uses a key-value encoding, allowing it to be reliably parsed. This ele-
ment is returned for OFML articles only.

useFinalArticleNumber

If true, the client should display the final article number. If false, the client should display the base
article number. This element is returned for OFML articles only.

shortText

This field contains the short description of the article. While not enforced by the Online Configurator,
the short description should consist of a single line of text only. The short description describes the
article and is supposed not to depend on the current configuration of the article.31

longText

This field contains the long description of the article, possibly consisting of multiple lines of text. The
long description may describes the article in more detail than the short description, but, like the short
description, should not depend on the current configuration of the article.

featureText

The feature description describes the configuration-dependent features of the article.

DescriptionMode

The field will always be present in instances of ArticleProperties returned from the server to
the client. It is optional because the client does not need to set this field when it passes an instance
of ArticleProperties to the server. In fact, setting this field has no effect32.

currency

If the article position has a price, then this field contains the ISO 4217 currency code of the price
(pseudo-currency codes are not supported).

PurchasePrice

This field contains the purchase price as read from the product database, possibly adjusted by an
OFML price profile. If no purchase price could be determined, the field is not available. The field will
not be provided if the currencies of purchase price and sales price are different and the value of the
purchase price is non-zero.

SalesPrice

This field contains the sales price as read from the product database, possibly adjusted by an OFML
price profile. If no sales price could be determined, the field is not available.

priceInfo

This field is used to return price information if option priceInfo in type
GetItemPropertiesOptions is true, return of price information is enabled33 and valid price in-
formation could be determined. No valid price information can be determined if the sales unit size
and/or quantity of the calculation do not have finite values or, in merge mode Compact, the article
properties are returned for a sub-article item and the quantity of the main article item is zero34.

quantity

This field contains the position’s quantity. The exact meaning depends on the article’s order unit. The
Online Configurator does not limit the quantity to a certain range or step size.

31 This does not mean that the (short) description of an article position does not change if a property of the position is changed. For
instance, in the case of meta types, a property change may select another article, and thus result in another (short) description.

32 Operation setItemProperties ignores an article description mode specified by the client.
33 application feature egr.eai.ws.basket.ReturnPriceInfo is available
34 To determine the quantity of the sub-article item it is necessary to divide the total quantity of the sub-article item, as returned by the

corresponding item property, by the quantity of the main article item, thus resulting in division of zero by zero if the main article item’s
quantity is zero. While this problem could be circumvented with a new property that contains the sub-article item’s quantity relative to
the main article item, this would not help much as the net value returned by the calculation would be zero too, and thus there would
be no (easy) way to compute a net price.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 122 of 298

EAIWS 4.16

alternativePosition

This field indicates whether or not the position is an alternative position. Alternative positions are
supposed to be ignored when the total value of an order (or sub-totals for folders) are computed.

The alternativePosition element of complex type articleProperties has been deprec-
ated, but is still supported for backward compatibility. With the new implementation, the value is
true if the excluded calculation set is either the universal set or contains the names of all calcula-
tions (pricing procedures) used by the basket.

excludedCalculations

This field indicates the names of all price calculations which consider the item an alternative position
(the name of a price calculation is equal to the name of the pricing procedure used by this calcula-
tion). As a special case, this set may be the universal set, containing all possible price calculation
names. The universal set is represented by a set containing only the empty string.

Note that the excludedCalculations elements are used by the getItemProperties operation
only. The setItemProperties operation ignores these elements, if present.

inconsistencyFlag

The value of this field indicates whether or not the Online Configurator detected an inconsistency in
the article’s current configuration.35 If this field is true, an inconsistency has been detected, and the
article’s price and/or the position’s value are probably invalid.

inconsistencyReason

If the value of field inconsistencyFlag is true, then this field should contain a description of the
inconsistency’s reason or reasons.

packagingInfo

When used with the getArticleProperties operation, this field contains a reference to an in-
stance of the PackingInfo (§5.6.1.28) structure. When used with the setArticleProperties
operation, the value of this field is ignored if the item is not an UserArticle (§5.6.1.7). If the item is
an UserArticle, the field should contain a reference to an instance of PackingInfo.

ofmlUpdateState

If the getItemProperties (§5.6.3.32) operation is used to get the properties of an OFML article
item, this element will be present and contains the update state of the article.

The update state returned here is always with respect to the full set of registered OFML catalogs.
Furthermore, since computation of the update state may be a somewhat expensive operation, the
update state is returned if and only if it is already known. If not, the returned update state is Un-
known.

geometryId

The element occurs in result of operation 'getItemProperties' if and only if the necessary set of geo-
metry checksums is stored in the corresponding basket article item (i.e. no attempt is made to get
them from the OFML article item, even if the OFML article item has already been instantiated). This
should always be the case unless the article item has been loaded from old BSK/OBX data, or from
BSK/OBX data written by another application.

In case of main article items the geometry ID consists of the geometry checksum for the whole (com-
posite) article. For sub-article items it consists of the geometry checksum for the whole sub-article
plus a checksum computed for the transformation of the sub-article relative to the main article.

subArticles

This field is used to return data about sub-articles if operation getItemProperties has been
called for a view item of type PartialPlanning or Aggregate, the view uses display mode
Sorted and merge mode Compact, and the item has sub-articles.

35 The fields inconsistencyFlag and inconsistencyReason may also be used to report other problems preventing the Online
Configurator from the computation of a valid price or value for this position.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 123 of 298

EAIWS 4.16

inactivePositionState

This field is a possibly empty array of instances of InactivePositionState, one for each pricing pro-
cedure that treats the position as an inactive position, or with a single element with an empty pp-
Name field (see above).

Valid manufacturer and series IDs consist of a non-empty sequence of graphical ASCII characters except
quotation mark ("), asterisk (*), slash (/), colon (:), less-than sign (<), greater-than sign (>), question mark
(?), backslash (\) and vertical line (|)36.

The purchase price and sales price are the prices of one order unit. They need to be multiplied by the quant -
ity to obtain the position’s value. They are not set to zero if the position is an alternative position.

Fields pseudoArticle and nonOrderArticle are returned for all article items, even though they are, as
of now, only meaningful for OFML article items.

Field articleClassifications is returned for all article items except set-article items, and only if op-
tion articleClassifications in GetItemPropertiesOptions is set to true.

All three new fields are ignored by operation setItemProperties.

5.6.1.28 PackagingInfo

Synopsis:

struct PackingInfo {
 Quantity* width;
 Quantity* height;
 Quantity* depth;
 Quantity* volume;
 Quantity* tareWeight;
 Quantity* netWeight;
 int* itemsPerPackUnit;
 int* packUnitsPerArticle;
}

The PackingInfo structure is referenced by the ArticleProperties (§5.6.1.27) structure. This element
is used to return OFML article packaging information to the client, and, in case of user articles, to allow the
client to set the packaging information.The fields are as follows:

width

This field contains the width of the packaging unit of the article.

height

This field contains the height of the packaging unit of the article.

depth

This field contains the depth of the packaging unit of the article.

volume

This field contains the volume of the packaging unit of the article.

tareWeight

This field contains the weight of the packaging unit of the article.

36 While there seems to exist no official definition of valid manufacturer and series IDs, the Online Configurator restricts them to a set of
characters that are not known to cause problems in certain contexts. For instance, Microsoft Windows prohibits the use of certain
characters in file names. These characters should not be used in manufacturer IDs either, as manufacturer IDs are used as the base
name of manufacturer registration files (<data>/registry/<manufacturer_id>.cfg).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 124 of 298

EAIWS 4.16

netWeight

This field contains the weight of the individual article.

itemsPerPackUnit

This field contains the number of articles per packaging unit.

packUnitsPerArticle

This field contains the number of packaging units which are used for the article.

A NULL quantity is used if an article has no length, volume or weight (i.e. no physical existence). In case of
an unknown length, volume or weight the corresponding element is not returned.

To reset a packaging info quantity (of an user article), the client can invoke the setItemProperties opera-
tion with the corresponding field set to an invalid quantity (complex type Quantity with the unit attribute
set to an empty string and no value attribute).

5.6.1.29 PartCompositionFailure

Synopsis:

PartCompositionFailure (
string cause
string itemId

)

Instances of `PartCompositionFailure` will be used in `BasketServiceFault` if thrown by operations
getGeneratedImage and getExportedGeometry if these operations were invoked to get an image or
geometry for a set-article item and the geometry compositor failed to obtain all set-article part geometries.

The field `itemId` holds the basket item ID of the set-article part whose geometry could not be obtained, and
the array `cause` contains the chain of exceptions that led to the failure. It contains at least one element.
Each element represents one exception and consists of the exception type, optionally followed by a colon, a
space, and the exception message.

5.6.1.30 TextItemProperties

Synopsis:

struct TextItemProperties {
 string text;
 DisplayText[] displayText;
 DisplayText[]? longDisplayText
}

The TextItemProperties structure is referenced by the ItemProperties (§5.6.1.20) structure. The
fields of this structure correspond to basket item properties specific to text items.

text

This field contains the text information.

5.6.1.31 Value

Synopsis:

struct Value {
 decimal* value;
}

Value is an abstract type used as base for Money (§5.6.1.34), Percentage (§5.6.1.35) and Quantity
(§5.6.1.32). The value represented by these complex types is either valid or invalid. An invalid value is

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 125 of 298

EAIWS 4.16

indicated by a missing value attribute. Unless explicitly specified otherwise, the web service does not return
elements of above types which represent invalid values. Instead, the element is omitted.

5.6.1.32 Quantity

Synopsis:

struct Quantity : Value {
 string unit;
}

The Quantity structure represents either a valid quantity, a null quantity, or an invalid quantity. In
case of a valid quantity, the value attribute inherited from the Value type is present, and the unit
attribute contains a valid UNECE unit of measure. In case of a null quantity, the value attribute con-
tains the value zero, and the unit attribute contains an empty string. Null quantities may be used if
it is known that the quantity is zero but no information about a particular unit of measure is available.
An invalid quantity is represented by a missing value attribute and an unit attribute containing an
empty string.

unit

This attribute contains the unit of the value inherited from the Value type (§5.6.1.31). The unit
attribute must be empty if the value attribute is missing. If the value attribute exists, the unit attribute
must represent a valid UNECE unit of measure, unless the value is zero, in which case the unit
attribute may be empty.

5.6.1.33 ManufacturerInfo

Synopsis:

struct ManufacturerInfo (
string concernId,
string supplierId,
string priceProfileRegionId,
DisplayText[] manufacturerName,
SeriesInfo[] seriesInfos,
DisplayText[] distributorName,
DisplayText[] copyright,
DisplayText[] addressName,
DisplayText[] addressStreet,
DisplayText[] addressCity,
DisplayText[] addressState,
DisplayText[] addressPOBox,
DisplayText[] addressZIP,
DisplayText[] addressCountry,
DisplayText[] addressEMail,
DisplayText[] addressPhone,
DisplayText[] addressFAX,
DisplayText[] addressWWW,
string manufacturerId,

 string? ExternalCatalogURL,
 DisplayText[]? externalCatalogName

)
externalCatalogURL

This field is present if the effective value of option externalCatalog is true and the
manufacturer registration contains a HTTP/HTTPS URL for the external catalog of this manufacturer.

externalCatalogName

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 126 of 298

EAIWS 4.16

This field is present if and only if field externalCatalogURL is present. It contains a possibly
empty list of text elements of type DisplayText with attribute lang specifying the text's language
(missing in case of undetermined language) and the actual text as the text element's content.

Depending on the effective value of option allLanguages, field externalCatalogName returns all the
external catalog names as specified in the manufacturer registration file (allLanguages is true) or a
single (possibly empty) external catalog name selected based on the effective list of project languages
(allLanguages is false). In the latter case, the text element does not contain the lang attribute, even if
the name originates from a language-specific section of the manufacturer registration file.

5.6.1.34 Money

Synopsis:

struct Money : Value {
 string currency;
}

The Money structure represents either a valid monetary quantity, a null quantity, or an invalid quantity. In
case of a valid quantity, the value attribute inherited from the Value type is present, and the currency at-
tribute contains a valid ISO currency code. In case of a null quantity, the value attribute contains the value
zero, and the currency attribute contains an empty string. Null quantities may be used if it is known that the
quantity is zero but no information about a particular currency is available. An invalid quantity is represented
by a missing value attribute and a currency attribute containing an empty string.

currency

This field contains the currency of the value inherited from the Value type (§5.6.1.31). The currency
attribute must be empty if the value attribute is missing. If the value attribute exists, the currency
attribute must represent a valid ISO currency code (but no pseudo-currency37), unless the value is
zero, in which case the currency attribute may be empty.

5.6.1.35 Percentage

Synopsis:

struct Percentage : Value {}

The Percentage structure represents either a valid or invalid percentage. The percentage is valid if
the inherited value attribute is present, and invalid otherwise.

5.6.1.36 PropertyClass
Synopsis:

struct PropertyClass {
 string name;
 string description;
}

The PropertyClass structure contains the symbolic name and descriptive text of a property class. In-
stances of this structure are used as part of the ArticleData structure (§5.6.1.42) to return information
about the property classes of an article.

name

the symbolic name of the property class; the values stored in this field correspond the the values
stored in the propClass field of the Property (§5.6.1.40) structure.

Properties that do not belong to a particular property class are assigned to the pseudo-class named
OI_NONE_PROPCLASS.

37 Pseudo currencies are all currencies with a currency code starting with the letter 'X' except XAF, XCD, XOF and XPF.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 127 of 298

EAIWS 4.16

description

This is the descriptive text of the property class. The description depends on the list of effective
product data languages (see operation setLanguages, section 5.6.3.4). If no description is avail-
able, the returned description is either empty or equal to the name of the property class. In particular,
for property class OI_NONE_PROPCLASS the client should be prepared to supply its own description.

5.6.1.37 PropertyType

Synopsis:

enum PropertyType {
 Character,
 Numeric,
 Length,
 Boolean
}

The PropertyType enumeration is used to specify the fundamental type of an article property. The follow-
ing enumeration values are defined:

Character

The value of a character property consists of a possible empty sequence of arbitrary characters.
Properties of type Character are also called string properties.

Numeric

The value of a numeric property is a fixed point decimal number. The complete property definition
(§5.6.1.40) contains both the total number of digits and the precision (the number of digits right of the
decimal point).

Length

A property of this type is a numeric property with the additional semantics that the value represents a
length in meter. Properties of this type are used to allow the user interface to convert the property
values into another unit before they are displayed to the user.

Boolean

Previously, boolean properties have been treated as properties of type Numeric with values one
and zero for true and false when returned by operations getArticleData, getChoiceList
and getAllChoiceLists, or zero and non-zero for false and true when set with operation
setPropertyValue.

An optional boolean field enableBooleanPropType has been added to the options argument
passed to these operations. Its default value is false, resulting in no change of behavior.

5.6.1.38 PropertyValue

Synopsis:

struct PropertyValue {
 string value;
 string text;
 URL smallIcon;
 URL largeIcon;
 Money? Surcharge;
 string? Image;
 boolean? Selectable;
}

Instances of the PropertyValue structure are returned by the Online Configurator to completely describe a
property value. The structure has the following fields:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 128 of 298

EAIWS 4.16

value

This is the internal property value.

For properties of type Character this field contains either an internal symbolic character sequence
or human readable text38.

For properties of type Numeric and Length this field contains the numeric value of the property
formatted as follows: The integral part of the value is formatted as an optional minus sign followed by
one or more decimal digits without any insignificant leading zeros. If the property is declared with a
non-zero number of decimal digits (digits right of the decimal point), the formatted integral part is fol-
lowed by a decimal point (.) and the number of declared decimal digits. XXX

text

This is the human readable property value.

For properties of type Character this is either the same as value, or, if value is a symbolic char-
acter sequence, a human readable text representing the symbolic value. The language used for the
human readable text depends on the configuration of the current session and the languages suppor-
ted by the product data.

For properties of type Numeric and Length this is the numeric value of the property formatted ac-
cording to the rules of the locale configured for the current session.

smallIcon

If the property has a choice list, and a small icon is available for this property value, then this field
contains an URL referencing the image for the small icon. Otherwise it contains an empty string.

image

The field, if present, contains the URL of a large material image (stored in directory .../mat/l).

largeIcon

If the property has a choice list, and a large icon is available for this property value, then this field
contains an URL referencing the image for the large icon. Otherwise it contains an empty string.

Surcharge

This field is used by operations getChoiceList and getAllChoiceLists to return the property value's
surcharge if

- return of price information is enabled

- OFML actually reports a surcharge for the property value

- The effective value of option discardSurcharge is false.

If present, the surcharge will always be a finite monetary quantity, i.e. have a finite, possibly zero,
value and a valid currency.

selectable

Depending on whether an instance of PropertyValue represents an actual (current) property value
or a choice list value, field selectable is missing (property value) or present (choice list value). In
the latter case, a value of false indicates that the choice list value should be displayed, but must
not be available for selection as the new property value.

If the value of a property is undefined then the value field of the PropertyValue structure has one of the
following special values:

@UNDEFINED

the property is neither visible, nor of type Character, nor does it have a choice list

@VOID

used if the property is an optional property

38 Symbolic character sequences are usually used with visible properties that have choice lists and do not allow additional values.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 129 of 298

EAIWS 4.16

@UNSPECIFIED

used if the property is an restrictable, but not an optional property

@NOVALUE

used if the property is neither an optional nor a restrictable property

The content of the text field of undefined property values is undefined and may change in further versions
of the Online Configurator. The smallIcon and largeIcon fields of undefined property values contain an
empty string.

5.6.1.39 Interval

Synopsis:

struct Interval {
 decimal minValue;
 decimal maxValue;
}

The complete property definition (§5.6.1.40) of a numeric or length property may use one or more instances
of the Interval structure to limit the valid range of values for the property.

minValue

the minimum value of the interval

maxValue

the maximum value of the interval

Both the minimum and maximum values of the interval are included in the interval and adhere to the preci-
sion and the total number of decimal digits as specified by the associated property definition.

5.6.1.40 Property

Synopsis:

struct Property {
 string propClass;
 string propName;
 string propText;
 PropertyType type;
 int width;
 int digits;
 int decDigits;
 boolean visible;
 boolean editable;
 boolean addValues;
 boolean choiceList;
 PropertyValue value;
 Interval[] intervals;
 boolean multiLine
}

The Property structure contains all available information about a property, except for the choice list if there
is one. It contains the following fields:

propClass

The property class is a symbolic name used to classify properties. Property class and property name
uniquely identify the property with respect to the article. The property class names stored in this field
correspond to the property class name stored in the name field of the PropertyClass structure
(§5.6.1.36).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 130 of 298

EAIWS 4.16

propName

The property name is the symbolic name of the property. The property name is unique relative to the
property class, but there is no guarantee that no two properties of an article have the same property
name.

propText

The property text is a short human readable description of the property, suitable for use in a tabular
property editor. The language of the text depends on the configuration of the current session and the
languages available in the product data.

type

This is the fundamental type of the property. See 5.6.1.37.

The value of this field will never change for a particular property.

width

This is the maximum number of characters for properties of type Character. For other property
types the value of this field is undefined and should not be used.

The value of this field will never change for a particular property.

digits

This is the maximum number of significant decimal digits for properties of type Numeric and
Length. For other property types the value of this field is undefined and should not be used.

The value of this field will never change for a particular property.

decDigits

For properties of type Number and Length, this is the number of decimal digits right of the decimal
point (the precision). For other property types the value of this field is undefined and should not be
used.

The value of this field will never change for a particular property.

visible

This field indicates whether the property should be displayed by a property editor39. The value of this
field may change depending on the current configuration.

editable

This field indicates whether the property may be changed by the client40. It should be ignored for in-
visible properties. The value of this field may change depending on the current configuration.

The field editable is always true if field visible is false. The OFML API does not allow to dif-
ferentiate between editable and read-only invisible properties, and EAIWS does not prevent the cli-
ent from setting the value of an invisible property, so the value true is more appropriate.

addValues

This field indicates whether the property may assume values (and may be set by the client to a
value) other then the values found in the choice list of the property. For numeric and length proper-
ties, the restrictions imposed by possible intervals are not affected by the value of this field.

choiceList

This field indicates whether a property has a choice list. Unless the field addValues is true a
choice list restricts the allowed property values to the elements of the choice list. The value of this
field may change depending on the current configuration.

value

This field contains information about the current value of the property. See 5.6.1.38.

39 The visible field is not used to mark properties that have been explicitly hidden by the relation knowledge as invisible, as such
properties are not returned by the getArticleData operation. Instead, it is used to support properties that may affect the graphical
representation of the article but are not to be displayed by a property editor.

40 The property may be marked editable even if the value of the property cannot really be changed, as may be the case if the current
value is the only element of the properties choice list and the property does not allow additional values.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 131 of 298

EAIWS 4.16

intervals

This field contains a sequence of intervals. For numeric and length properties this sequence may
contain one or more elements defining the allowed set of values for this property. For properties of
other types this sequence is always empty.

The allowed set of values of a property, and thus the intervals, may change depending on the current
configuration.

5.6.1.41 PriceComponent

Synopsis:

struct PriceComponent {
 string name;
 decimal value;
}

The PriceComponent structure contains information about a single price component. The following fields
are defined:

name

The name field contains a short description the price component. The language of the text depends
on the configuration of the current session and the languages available in the product data.

value

The value field contains the value of the price component.

5.6.1.42 ArticleData

Synopsis:

struct ArticleData {
 string manufacturerId;
 string seriesId;
 string baseArticleNumber;
 string variantCode;

 string shortText;
 string longText;
 string featureText;
 ArticleDescriptionMode descriptionMode;

 PropertyClass[] propertyClasses;
 Property[] properties;

 URL catalogImage;
 URL catalogIcon;

 string currency;
 decimal* pdPurchasePrice;
 decimal* pdSalesPrice;

 PriceComponent[] pdPurchasePriceComponents;
 PriceComponent[] pdSalesPriceComponents;

 string purchaseCurrency,
 string salesCurrency,
 boolean priceDateSupported,
 boolean priceDateEditable,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 132 of 298

EAIWS 4.16

 date priceDate
}

The ArticleData structure contains most product information available for a particular article. The follow-
ing fields are defined:

manufacturerId

This field contains the commercial manufacturer ID of the article.

seriesId

This field contains the commercial series ID of the article.

baseArticleNumber

This field contains the base article number of the article.

variantCode

This field contains the variant code of the article. Naturally, the variant code depends on the current
configuration of the article.

For ordinary OCD articles, manufacturer ID, series ID, base article number and variant code are suf-
ficient to identify an article and its current configuration.

shortText

This field contains the short article text – usually a single line describing the article. The language of
the text depends on the configuration of the current session and the languages available in the
product data.

longText

This field contains the long article text – often consisting of more than a single line. The language of
the text depends on the configuration of the current session and the languages available in the
product data.

featureText

This field contains a description of the article features / properties. It depends on the current config-
uration of the article. The language of the text depends on the configuration of the current session
and the languages available in the product data.

DescriptionMode

The field will always be present in instances of ArticleProperties returned from the server to
the client. It is optional because the client does not need to set this field when it passes an instance
of ArticleProperties to the server. In fact, setting this field has no effect41.

propertyClasses

This field contains a possibly empty sequence of all property classes (§5.6.1.36) of the article. It may
contain property classes not used by any property stored in the properties field.

The primary display order of properties in a property editor is defined by the order of property
classes as stored in this field. Within a single property class, the secondary display order is defined
by the order of properties as stored in the properties field.

If a property editor groups properties below a property class, it should not display property classes
with no associated visible properties, as the list of property classes may include classes that are
used by internal properties only.

Note that the mapping from symbolic property class name to property class description may differ
from position to position, and may change even for a given position after a change to the position’s
configuration. Therefore, it is not recommended to cache the mapping from property class names to
property class description.

properties

This field contains a possibly empty sequence of the properties (§5.6.1.40) of the article. The se-
quence contains all user visible properties (configurable and read only properties to be displayed by

41 Operation setItemProperties ignores an article description mode specified by the client.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 133 of 298

EAIWS 4.16

a property editor) as well as purely graphical properties (properties affecting only the graphical rep-
resentation of the article, like geometry and material).

Naturally, the content of the sequence depends on the current configuration. This does not only ap-
ply to the content of the Property structures, but also to the set of properties as identified by their
class and name. However, the order of properties is guaranteed not to change42.

catalogImage

If, during insertion of the article into the basket structure, information about the catalog containing the
article has been provided43, and if the Online Configurator has been able to find an image for this art-
icle in the catalog, then this field contains an URL referencing this image. Otherwise, this field con-
tains an empty string.

Although, in theory, the value of this field depends on the current configuration, catalogs usually do
not contain entries for configuration-dependent images and thus the value of this field usually does
not change for a particular article.

catalogIcon

This element is present if and only if option fetchCatalogIcon is true.

currency

This field contains the ISO 4217 currency code (but no pseudo-currency code) of the article’s pur-
chase and sales prices as reported by the values of the pdPurchasePrice, pdSalesPrice,
pdPurchasePriceComponents and pdSalesPriceComponents fields.

If neither a purchase nor a sales price could be determined for (the current configuration of) the art-
icle, this field contains an empty string.

The actual currency depends on the configuration of the current session and the currencies available
in the product data.

pdPurchasePrice

This field contains the purchase price for the current configuration of the article as determined by the
product data. If no purchase price could be determined, the field is not available. The field will not be
provided if the currencies of purchase price and sales price are different and the value of the pur-
chase price is non-zero.

pdSalesPrice

This field contains the sales price for the current configuration of the article as determined by the
product data. If no sales price could be determined, the field is not available.

pdPurchasePriceComponents

This field contains the individual components of the article’s purchase price. If not empty, the sum of
the listed price components is equal to the value of the pdPurchasePrice field.

Even with a non-zero purchase price the list of price components may be empty if, for whatever
reason, the Online Configurator was not able to produce a proper list of purchase price components.

pdSalesPriceComponents

This field contains the individual components of the article’s sales price. If not empty, the sum of the
listed price components is equal to the value of the pdSalesPrice field.

Even with a non-zero sales price the list of price components may be empty if, for whatever reason,
the Online Configurator was not able to produce a proper list of purchase price components.

42 If a particular configuration of an article contains properties A and B, with property A preceding property B, then in any other
configuration of the article containing both the properties A and B, property A precedes property B.

43 The catalogId and/or catalogPackageId fields of the InsertInfo structure have been set to valid values.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 134 of 298

EAIWS 4.16

5.6.1.43 ArticleFeature

Synopsis:

struct ArticleFeature {
 string symbolicName;
 string displayName;
 string symbolicValue;
 string displayValue;
 boolean visible;
}

The ArticleFeature structure is used as the element type of the return value of the
getArticleFeatures operation (§5.6.3.35). It has the following fields:

symbolicName

This field contains the symbolic name of the feature. The symbolic name is never an empty string. If
the article is based on OCD product data, the symbolic feature name is equal to an OCD property
name.

displayName

This field contains the feature name as displayed to the user. If the feature is visible, the display
name of the feature is never an empty string.

symbolicValue

This field contains the symbolic value of the feature. If the article is based on OCD product data, the
symbolic value is equal to the OCD property value of the OCD property identified by the symbolic
name. The symbolic value may be an empty string, even if the display value is not an empty string.

displayValue

This field contains the feature value as displayed to the user. The display value may be an empty
string, even if the feature is visible, or the symbolic value is not an empty string.

visible

This field is set to true if the feature’s display name and possibly display value are displayed to the
user. If set to false, the feature is internal and not to be displayed to the user.

A visible ArticleFeature, when displayed to the user, always results in a single line. If the description of a
feature consists of multiple lines (as may be the case when the getArticleFeatures operation is called
with the description option set to true), the sequence returned by this operation contains multiple sub-
sequent instances of ArticleFeature with equal symbolicName and symbolicValue, each represent-
ing one line of the feature’s description.

If the description option of the getArticleFeatures operation was set to true, the displayName
field of returned ArticleFeature structures does not necessarily represent the features name. Instead,
display name and display value should be treated as a pair of strings, at least one of them not empty, to be
displayed in a single line.

Depending on the underlying product data, the display name as stored in the ArticleFeature structure
may end with a colon (:), possibly followed by space. This should be taken into account when display name
and display value are concatenated before they are displayed to the user.44

44 When the Online Configurator concatenates the display name and value of a feature line to build the feature text returned by the
getArticleData and getItemProperties operations, it behaves as follows: If the name is empty, the value is used (should not
happen); otherwise, if the value is empty, the name is used; otherwise, if name ends with a colon (:), name and value are separated
by space; otherwise, if the name ends with a colon followed by a single space character (U+0020), nothing is inserted between name
and value; otherwise, name and value are separated by a colon followed by a single space.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 135 of 298

EAIWS 4.16

5.6.1.44 ArticleFeatures

Synopsis:

struct ArticleFeatures{
UUID itemId; // attribute

 ArticleFeature[] features; // element
}

5.6.1.45 ChoiceList

Synopsis:

struct ChoiceList {
 string propClass;
 string propName;
 PropertyValue[] values;
}

Instances of the ChoiceList structure are used to associate the class and name of a property with its
choice list (i.e. the sequence of PropertyValue instances). It contains the following fields:

propClass

the property class

propName

the property name

values

a sequence of PropertyValue instances representing the current choice of values for the prop-
erty45

5.6.1.46 InsertInfo

Synopsis:

struct InsertInfo {
 string catalogId;
 string catalogPackageId;

 string articlePackageId;
 string manufacturerId;
 string seriesId;
 string baseArticleNumber;
 string variantCode;
 string finalArticleNumber;
 string ofmlVariantCode
}

The InsertInfo structure is used to collect arguments of the insertOCDArticle operation. It contains
the following fields:

catalogId

This field may be set to the identifier of the catalog containing the article as returned by the
catalogId field of the CatalogItem structure (§5.5.1.31).

This is an optional field. If the client is not able to, or does not want to specify a catalog ID, this field
should be set to an empty string.

45 Unless the current value of the property is undefined it is always an element of the choice list.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 136 of 298

EAIWS 4.16

catalogPackageId

This field may be set to the identifier of the OFML package containing the OFML catalog entry for
this article as returned by the catalogPackageId field of the CatalogItem structure (§5.5.1.31).

This is an optional field. If the client is not able to, or does not want to specify the catalog package
ID, this field should be set to an empty string.

articlePackageId

This field may be set to the OFML package ID of the package containing the product data of the art-
icle. If the article has been found in the catalog using the catalog service, it should be set to the
value returned by the articlePackageId field of the CatalogItem structure (§5.5.1.31).

This is an optional field. If the client is not able to, or does not want to specify the article package ID,
it should set this field to an empty string, and it must set the manufacturerId field to a valid value.

If this field is set to a non-empty string, then the identified OFML package must contain the product
data for the article.

manufacturerId

This field may be set to the commercial manufacturer ID of the article. If the client is not able to, or
does not want to specify the commercial manufacturer ID, this field should be set to an empty string.

If the articlePackageId field does not identify the OFML package containing the product data for
the article, then the manufacturerId field must be set to a valid value. The Online Configurator
searches for an OFML package that contains product data for the specified manufacturer, series (if
specified), and base article number. If more than one such package exists, it is unspecified which
package is actually used.

seriesId

This field may be set to the series ID of the article. If the client is not able to, or does not want to spe-
cify the series ID, this field should be set to an empty string.

baseArticleNumber

This field must be set to the base article number of the article. If the article has been found in the
catalog using the catalog service, it should be set to the value returned by the
baseArticleNumber field of the CatalogItem structure (§5.5.1.31).

variantCode

This field may be set to the variant code of the article, although it is not recommended to do so un-
less the product data of the article uses a key/value format for the variant code.

The variant code may be either partial or complete. If the product data of the article uses a key/value
format for the variant code then the partial variant code may specify the value of any property. Other-
wise a partial variant code may specify only an initial sequence of property values.

If the variant code is specified, it is used to determine the initial configuration of the article. If the cli -
ent does not want to specify a variant code, it should set this field to an empty string.

finalArticleNumber

This element may be used instead of the variant code to specify the initial configuration of an article.

If both the variant code and final article number are specified (i.e. non-empty), the final article num-
ber is ignored.

If the base article number is not specified, and the final article number is specified and not ignored,
the basket web service searches the OFML product data for an article matching the final article num-
ber. If no such article is found, the insert operation fails. If at least one article is found, the best
matching article is used (i.e. the catalog ID, catalog package ID, article package ID and base article
number of the best matching article are used as part of the insert info if not yet specified).

The details of the search algorithm, including selection of the best matching article, are implementa-
tion defined. However, the catalog ID, catalog package ID, article package ID, manufacturer ID and
series ID, if specified as part of the insert info, are taken into account. The selected article is guaran-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 137 of 298

EAIWS 4.16

teed to match these parameters, except for the series ID, which is only take as a hint due to limita-
tions of the XCF catalog format and the fact that one OFML package can contain articles of multiple
series.

Furthermore, search for a final article number requires that at least one of catalog ID, catalog pack-
age ID, article package ID or manufacturer ID is specified as part of the insert info.

Note that the mechanism must be enabled for for article packages supporting this feature by DSR
feature maySetFinalArticleSpec.

OfmlVarianCode

If the element is specified46, the element basketArticleNumber must be specified too, and the
specified OFML variant code must be valid for the article to be inserted.

If the OFML variant code is specified together with the final article number and/or ordinary variant
code, the OFML variant code is used to initialize the new article.

5.6.1.47 ImageInfo

Synopsis:

struct ImageInfo {
string tag,
string url,
string[] attributes
string itemId

}
Instances of ImageInfo are returned by the getImages (§5.6.3.42) operation to return information about
images associated with a basket item. The fields of ImageInfo are as follows:

tag

The tag used to identify the image. This is either the tag specified with the tag option of the get-
GeneratedImage operation (5.6.3.40), or an empty string if the URL references the PBK image
(see §5.6.3.42 for more information).

url

The value of this field is the URL that can be used to download the image. The URL is valid until the
session that invoked the getImages operation returning this URL has been closed.

5.6.1.48 ConfigDependentMediaInfo

Synopsis:

struct ConfigDependentMediaInfo {
 int weight;
 string mediaType;
 string format;
 string[] modifiers;
 URL url;
}

46 An article number or variant code is specified if the element is present and has a non-empty value.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 138 of 298

EAIWS 4.16

5.6.1.49 ItemSelectionOptions

Synopsis:

struct ItemSelectionOptions {
 boolean* wholeComposite;
 boolean* subItems;
 boolean* parentItems;
 ViewId* viewId;
}

Is used to augment the list of items selected by the itemIds parameter (if not empty).

wholeComposite

If the wholeComposite attribute is present and true, the operation iterates over all selected items,
and for each basket sub-article item adds the main article item to the list of selected items if it is not
already an element of this list. Then, the operation iterates again over the resulting list (including ele-
ments added by this step), and for each basket article item adds all sub-article items if they are not
already part of the list.

subItems

If the subItems attribute is present and true, the operation iterates over the list of items selected
thus far and adds all direct and indirect sub-items if they are not already an element of the list.

parentItems

If the parentItems attribute is present and true, the operation iterates over the list of items selec-
ted thus far and adds all direct and indirect parent items if they are not already an element of the list.

viewId

This field is ignored by most operations that take a parameter of type ItemSelectionOptions, or
one of its sub-types. However, the operations getAllItems, getItemProperties,
getPriceCalculationSheet and getPriceCalculationSheets use this field to select a bas-
ket view and interpret item IDs passed to the operation as view item IDs instead of basket item IDs.

Operations that use this field behave as before if the field is missing, has an empty value, or has the
NIL-UUID as its value. Otherwise the field’s value must be the ID of an existing basket view.

5.6.1.50 GetChoiceListOptions

Synopsis:

struct GetChoiceListOptions (
boolean convertSurcharge,
boolean formatSurcharge,
boolean discardSurcharge,

 boolean? HighResPropValueIcons,
 boolean? FetchPropValueImages,

boolean? enableBooleanPropType
)

convertSurcharge

If true, convert surcharge from currency reported by OFML to currency used by basket. Default value
is true.

FormatSurcharge

If true, append formatted surcharge to text reported for property values. Default value is true.

DiscardSurcharge

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 139 of 298

EAIWS 4.16

If true, don't report surcharge as surcharge field of complex type PropertyValue (if formatSurcharge
is true, the formatted surcharge is still appended to the property value text). The default value is
equal to the effective value of formatSurcharge.

The default values apply if no options are passed to aforementioned operations, or if they are passed but the
corresponding option has not been set.

highResPropValueIcons

Controls whether fields smallIcon and largeIcon of type PropertyValue return URLs for the traditional low
resolution material icons (if false) or may return URLs for high resolution material icons (if true).

If set to false (the default value), the behavior of EAIWS with regards do fields smallIcon and largeIcon does
not change.

If set to true, and directories .../mat/ and .../mat/m exist, smallIcon, if non-empty, references a file in .../mat/s,
and largeIcon, if non-empty, references a file in .../mat/m.

If set to true and at least one of .../mat/s and .../mat/m does not exist, both smallIcon and largeIcon, if non-
empty, reference a file in .../mat.

fetchPropValueImages

Controls whether the new field image of type PropertyValue is absent (if false, the default value) or may
reference a material image in directory .../mat/l (if true).

Field image is absent if option fetchPropValueImages is set to true but no corresponding image file is
found. This differs from fields smallIcon and largeIcon, which are always present, but contain an empty string
if the corresponding icon is not found.

enableBooleanPropType

The optional boolean field enableBooleanPropType enables boolean properties. Its default value is
false, resulting in no change of behavior. Previously, boolean properties have been treated as properties of
type Numeric with values one and zero for true and false when returned by operations
getArticleData, getChoiceList and getAllChoiceLists, or zero and non-zero for false and
true when set with operation setPropertyValue.

If enableBooleanPropType is set to true, the behavior for boolean properties changes as follows:

• Operation getChoiceList and getAllChoiceLists returns true and false instead of 1. and
0. in field value of type PropertyValue.

If option enableBooleanPropType is effectively false, operation getChoiceList returns the value of
boolean properties as 1 and 0 instead of 1. and 0. in field value of type PropertyValue.

5.6.1.51 GetAllItemsOptions

Synopsis:

struct GetAllItemsOptions : ItemSelectionOptions {
 boolean *setArticleIds;
 boolean *geometryIds;
 boolean *positionNumbers;
 boolean *basketItems;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 140 of 298

EAIWS 4.16

Can be used as argument of operation getAllItems (§5.6.3.13).

The optional attributes setArticleIds and geometryIds of type boolean control whether or not re-
turned instances of complex type BasketItem contain set-article IDs (and set-article part IDs) and geometry
IDs (if available).

The default value of these options is false.

positionNumbers

If the value of this field is true and field viewId contains the ID of a basket view then the basket
items returned by operation getAllItems will return the position number of the returned view item.

The default value of this field is true.

basketItems

If the value of this field is true and field viewId contains the ID of a basket view then the basket
items returned by operation getAllItems do not use field basketItemIds to return IDs of refer-
enced basket items, but use field basketItems to return complete basket items.

Options setArticleIds and geometryIds may be used to control the content of these nested
instances of BasketItem.

5.6.1.52 DeleteItemsOptions

Synopsis:

struct DeleteItemsOptions: ItemSelectionOptions {
 boolean* subArticles;
}

The attributes from ItemSelectionOptions are used to augment the set of selected items passed to op-
eration deleteItems.

subArticles

The boolean attribute subArticles of DeleteItemsOptions, if specified as true, enables the
deletion of individual sub-articles of composite articles (if supported by the underlying OFML data).

5.6.1.53 MoveItemsDirection

Synopsis:

enum MoveItemsDirection {
 Up,
 Down,
 Indent,
 Unindent
}

The MoveItemsDirection enumeration is used to identify whether the specified items are to be moved up
or down within their current folder, or are to be indented or unindented. The following enumeration values are
defined:

Up

Move item up.

Down

Move item down.

Indent

Indent item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 141 of 298

EAIWS 4.16

Unindent

Undented item.

5.6.1.54 MoveItemsResult

Synopsis:

enum MoveItemsResult {
 Done,
 NothingToDo,
 NoConsecutiveItemSequence,
 NoPredecessor,
 NoSuccessor,
 HasSuccessor,
 NoGrandparent,
 CannotChangePlanningItemIndentation,
 NewParentHasInappropriateType
}

The MoveItemsResult enumeration is used to identify the results of the moveItem (§5.6.3.23) operation. If
there are multiple possible return values, the first one from the list below is selected. The following enumera-
tion values are defined:

Done

Operation successful, item structure changed.

NothingToDo

The specified set of items is empty.

NoConsecutiveItemSequence

The specified set of items is not a consecutive sequence of children of the same father.

NoPredecessor

The specified item sequence can not be moved up or indented because the first item of the se-
quence is also the first child of the parent item.

NoSuccessor

The specified item sequence can not be moved down because the last item of the sequence is
already the last child of the parent item.

HasSuccessor

The specified item sequence can not be unindented because the last item of the sequence is not the
last child of the parent item.

NoGrandparent

The specified item sequence can not be unindented because their current parent has no parent.

CannotChangePlanningItemIndentation

Planning items can not be indented or unindented.

NewParentHasInappropriateType

At least one of the items to indent is a folder and the new parent is not a folder or at least one of the
items to indent is an article and the new parent is neither an article nor a folder.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 142 of 298

EAIWS 4.16

5.6.1.55 RelocateItemsOptions

Synopsis:

struct RelocateItemsOptions {
 boolean *doNotModify;
 boolean *flat;
}

Is used to specify in which way the items should be moved by the method relocateItems (§5.6.3.24).

In general, the specified items are moved together with all their descendants (i.e. whole sub-trees are
moved).

flat

The option flat (false by default) controls the behavior if one of the items to move is a descendant
of another item to move (the ancestor). If true, the sub-tree rooted at the descendant will be moved
to the father. If false, the descendant will be moved as part of the sub-tree rooted at the ancestor.

doNotModify

If option doNotModify (false by default) is true, the final step of moving the items is suppressed.
Other than that, the operation behaves exactly the same way as with this option set to false,
including returning the same result and throwing the same exceptions, unless they occur during the
actual move of the items (which should not happen).

5.6.1.56 RelocateItemsResult

Synopsis:

enum RelocateItemsResult {
 Done,
 NothingToDo,
 CannotReparentPlanningItem,
 NewParentHasInappropriateType,
 IllegalStructuralChange
}

The operation relocateItems (§5.6.3.24) may return the following enumeration values:

Done

The items have been moved as specified.

NothingToDo

No item has been moved because the list of items to move was empty, or the items where already in
the specified position and order.

IllegalStructuralChange

No item has been moved because doing so would result in an invalid basket item structure, or is just
impossible. This may happen if the father or one of its ancestors, or the item identified by beforeId
(if non-NIL and a child of the new father), is also included in the list of items to move.

NewParentHasInappropriateType

No item has been moved because at least one of the items to be moved is not allowed as a child of
the new father/parent item.

CannotReparentPlanningItem

No item has been moved because doing so would require reparenting of a planning item, which is
generally not allowed.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 143 of 298

EAIWS 4.16

5.6.1.57 OAPRotateObjectAction

Synopsis:

struct OAPRotateObjectAction : OAPAction {
 Rotation rotation;
}

5.6.1.58 OAPTranslateObjectAction

Synopsis:

struct OAPTranslateObjectAction : OAPAction {
 Vector3 offset;
}

5.6.1.59 OBKVersionInfo

Synopsis:

final struct OBKVersionInfo{
 string vendorKey;
 string appKey;
 string appVersion;
 string bskXmlVersin;
 string? bskVersion;

}

The values of all fields in OBKVersionInfo are equal to the values of corresponding attributes in element
<versionInfo> of BSK streams. While the values are expected to be non-empty, this isn't actually guaran-
teed (except for bskVersion, which is always non-empty if present).

All fields should be present in OBK files written by offline applications. In OBK files written by EAIWS, all
fields except bskVersion should be present.

Field obkVersionInfo is used to return information about the version information contained in the currently
loaded OBK file. The field is present if and only if at least one of the version information fields is non-empty.

5.6.1.60 OperationMode

Synopsis:

struct OperationMode {
 boolean* subPositions;
 boolean* mainArticles;
 boolean* breakUpSetArticles;
 boolean migrate
}

The flags in the operation mode parameter opMode control the behavior of some basket service operations.
The documentation of these operations should contain more information.

In any case, all attributes of this type are optional. If missing, they default to false.

5.6.1.61 CopyOptions

Synopsis:

struct CopyOptions {
 string* encoding;
 string* suffix;
 boolean* overwrite;
 boolean* cut;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 144 of 298

EAIWS 4.16

 boolean omitPriceData
}

Options to be used in copy (§5.6.3.51) operation.

encoding

This attribute specifies the encoding to be used for the OBX stream. The default value of this option
is UTF-8.

suffix

This attribute specifies the suffix to be used in case the uri parameter is empty. If the suffix is not empty
and does not start with a period character ('.'), a period is prepended to the suffix. The default value of this
option is .obx.

overwrite

This attribute specifies whether the operation should fail if the file specified by the uri parameter already ex-
ists (overwrite=false) or overwrite the file. The default value of this option is false.

cut

This attribute

The cut option specifies whether or not the copied items are to be deleted once the OBX stream has been
successfully written. The default value of this option is false.

omitPriceData

Possible values are true and false, with false being the default value.

5.6.1.62 PricingProcedure

Synopsis:

struct PricingProcedure {
 string name;
 string displayName;
 PricingProcedureLine[] lines;
 HalfWayRoundingMode halfWayRoundingMode;
}

Describes the pricing procedure (calculation scheme) and gives information about the lines used in the
pricing procedure.

5.6.1.63 PricingProcedureLine

Synopsis:

struct PricingProcedureLine {
 int level;
 int counter;
 LineType lineType;
 string conditionType;
 string decription;
 int* from;
 int* to;
 LineInsertMode insertMode;
 int maxOccurs;
 PrintControl printControl;
 string[] tags;
}

Describes the pricing procedure line.

Tags Assign a particular semantic to a line. A tag may be assigned to multiple lines, and a line may be

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 145 of 298

EAIWS 4.16

assigned multiple tags. The PricingProcedureLine contains zero or more tags elements of type
string, each of them containing one tag.

level and counter describe the position of the calculation line in the calculation sheet. Whereas counter
describes the position inside a level.

from and to describe the calculation line levels a condition line uses as input value. If no from value is set
the condition line always uses the previos condition line value as input except it is of LineType
calculationBreak .

maxOccurs desribes how often a manual condition can be added to the calculation.

5.6.1.64 PricingProcedureDescription

Synopsis:

struct PricingProcedureDescription {
 string name;
 string displayName;
}

Returned by operation listPricingProcedures (§5.6.3.54).

5.6.1.65 CalculationLine

Synopsis:

struct CalculationLine {
 InactiveFlag[] inactive;
 int level;
 int counter;
 string* conditionType;
 string description;
 Value* amount;
 Quantity* qtyRelation;
 Money* value;
 CSValidationError groupError,
 CSValidationError error
 boolean amountEditable;
 boolean amountEdited,
 boolean qtyRelationEditable;
 boolean conditionRemovable,
 boolean ValueEditable
}

Provides details of a calculation line.

The element inactive has zero or more occurrences. If there is at least one occurrence, the condition
is inactive. The individual elements describe one or more reasons for the inactivity of the condition.

level and counter describe the position of the calculation line in the calculation sheet. Whereas
counter describes the position inside a level.

If amountEditable is true a value can be set to this calculation line via setConditionAmount
(§5.6.3.61).

If qtyRelationEditable is true the quantity relation can be changed via setQuantityRelation
(§5.6.3.63).

The operation getPriceCalculationSheet (§5.6.3.57) may return calculation lines with
elements amount, qtyRelation and value that do not have a non-empty value attribute,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 146 of 298

EAIWS 4.16

indicating an invalid amount, quantity relation or value.

ConditionRemovable: The value of this attribute is true if the line is a condition line that can be
removed.

The information about addable and removable conditions is valid at the time the calculation sheet
was returned by the server. Changes to the configuration of the article or to the calculation itself may
invalidate this information.

Field groupError is present if and only if the line represents a group condition (this also includes
header conditions) and there was an error validating the condition group.

Field error is present if there was an error validating the calculation line and the error is not
suppressed.

An error is suppressed if:

- It can be ignored because the line represents an item condition with no valid data (as is the case,
for example, after a manual condition has been added and before a condition amount has been set).
Even though such lines have an invalid condition value, this doesn't matter as their outgoing value is
always equal to their incoming value, and their condition value is ignored by reference ranges and
aggregate conditions.

- The value is clearly a follow-up error. As of now the only errors considered follow-up errors are
those of type CSInvalidValueError, and only if

- The incoming value of a line is invalid because the outgoing value of the parent line is
invalid,

- The reference value of a line is invalid because the outgoing value, condition value, or
subtotal value of a referenced line is invalid, or

- The value of an item or aggregate subtotal is invalid because the incoming value is
invalid, unless it is an item subtotal with no parent line. (This matters only for subtotals that
compute their value as the difference of incoming value and base value, as is the case for
subtotals that represent a margin, as all other subtotals simply use the base value as their
value, and an invalid base value is covered by above two conditions.)

An user interface may choose to ignore errors (field error) of item calculations, or treat them as less
severe, if they are of type CSInvalidValueError with result kind GroupCondBase and parameter kind
CondBase, as such errors are probably follow-up errors of another error in the same item calculation
or of an error in another item calculation with a condition in the same condition group.

5.6.1.66 CalculationSheet

Synopsis:

struct CalculationSheet {
 Quantity* quantity;
 string currency;
 Money* netValue;
 Money* tax;
 CalculationLine[] lines;
 string[]? addableConditions
}

The calculation sheets represents the calculation of the item passed to the function
getPriceCalculationSheet (§5.6.3.57) respectivly the header calculation if no item id is passed.

If present, the attribute tax contains the sum of the values of all lines tagged with TAX. The quantity
element is missing if the item ID passed to the operation getPriceCalculationSheet (§5.6.3.57)
represents a folder item.

AddableConditions: Each element of this sequence contains the name of a condition type that can be added
to this calculation sheet.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 147 of 298

EAIWS 4.16

5.6.1.67 ItemCalculationSheet

Synopsis:

struct ItemCalculationSheet {
 string id;
 CalculationSheet sheet;
}

5.6.1.68 HalfWayRoundingMode

Synopsis:

enum HalfWayRoundingMode {
 Even,
 Up
}

Rounding mode of the calculation.

Even
The system will round toward the nearest neighbor. In case of equidistant neighbors the system will
round towards the even neighbor. This rounding mode is also called Banker’s Rounding.

Up
With this rounding mode the system will round towards the nearest neighbor unless both neighbors
are equidistant, in which case the system will round up (away from zero).

5.6.1.69 LineInsertMode

Synopsis:

enum LineInsertMode {
 Always,
 Manual,
 Auto
}

Manually inserted condition lines may be manually inserted by the user one line at a time until the maximum
number of lines for the condition type has been reached. For each such condition line in an item calculation
there is a corresponding line with the same level and counter in corresponding aggregate calculations (for
item groups, set-articles, and the document).

Automatically inserted condition lines are inserted automatically by the system whenever the access method
of the condition type returns at least one condition record. If the condition type supports multiple results, and
the access method returns multiple condition records, multiple lines are inserted into the item calculation. In
aggregate calculations, however, there is only one condition line representing the accumulated condition
lines in item calculations for the same condition type.

5.6.1.70 LineType

Synopsis:

enum LineType {
 Condition,
 Subtotal,
 Text,
 CalculationBreak
}

Possible pricing procedure line types:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 148 of 298

EAIWS 4.16

Condition

Condition line. Can show prices coming from product data, modify a price or represent a tax.

Subtotal

Sum of all previous condition lines till last subtotal or calculation break.

Text

A text line displays an optional description, but no values. The outgoing value of a text line is equal to
its incoming value.

CalculationBreak

A calculation break line is like a text line, but prevents propagation of the ‘inactive due to
subsequent price’ flag.

5.6.1.71 PrintControl

Synopsis:

enum PrintControl {
 Never,
 PositionAlways,
 PositionNonZero,
 PositionChanged,
 PositionChangedNonZero,
 HeaderAlways,
 HeaderNonZero,
 HeaderChanged,
 HeaderChangedNonZero
}

Defines when to print a condition.

Never

Condition should never be shown on print-out.

PositionAlways

Always show condition on print-out of article.

PositionNonZero

Print article condition if not zero.

PositionChanged

Print article condition if changed by user.

PositionChangedNonZero

Print article condition if changed by user and not zero.

HeaderAlways

Always show header condition on print-out of article.

HeaderNonZero

Print header condition if not zero.

HeaderChanged

Print header condition if changed by user.

HeaderChangedNonZero

Print header condition if changed by user and not zero.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 149 of 298

EAIWS 4.16

5.6.1.72 CalculationRule

Synopsis:

enum CalculationRule {
 Invalid,
 Percent,
 FixedAmount,
 Quantity,
 GrossWeight,
 NetWeight,
 Volume,
 Rounding
}

5.6.1.73 ConditionType

Synopsis:

struct ConditionType {
 string name;
 string description;
 string* accessMethod;
 ConditionClass conditionClass;
 ConditionSign conditionSign;
 CalculationRule calculationRule;
 RoundingRule roundingRule;
 boolean groupCondition;
 boolean headerCondition;
 ConditionEditMode editMode;
 boolean amountEditable;
 boolean quantityRelationEditable;
 boolean valueEditable;
 boolean calculationRuleEditable;
 boolean conditionDeletable;
 boolean deferredCurrencyConversionEnabled;
}

Describes the details of a ConditionType.

Currently available accessMethod:

BPR00

(Base) sales price coming from OFML data

BPR01

(Base) purchase price coming from OFML data

VAPR00

sales variant prices coming from OFML data

VAPR01

purchase variant prices coming from OFML data

PR00

sales price coming from OFML data (BPR00 + VARP00)

PR01

purchase price coming from OFML data (BPR01 + VARP01)

TAX00_<type>

tax value from OFML data. If tax type is not supported by currently selected tax scheme it gives an

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 150 of 298

EAIWS 4.16

invalid value.

TAX01_<type>

tax value from OFML data. If tax type is not supported by currently selected tax scheme it gives no
value.

RND00

rounding interval in document currency

If amountEditable is true the amount or percentage value can be changed.

If quantityRelationEditable is true the base quantity of an amount can be edited.

If deferredCurrencyConversionEnabled is true the currency conversion is done after multiplication
with quantity.

If valueEditable is true the value can be changed.

5.6.1.74 ConditionClass

Synopsis:

enum ConditionClass {
 Price,
 PriceModifier,
 Tax
}

Defines the class a condition belongs to.

Price

Price coming from the product data.

PriceModifier

Condition which modifies a price. E.g. a discount or surcharge condition.

Tax

,
Tax condition, e.g. VAT.

5.6.1.75 ConditionSign

Synopsis:

enum ConditionSign {
 NoRestriction,
 Negative,
 Positive
}

Defines the sign of a condition.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 151 of 298

EAIWS 4.16

5.6.1.76 ConditionEditMode

Synopsis:

enum ConditionEditMode {
 Never,
 IfCondRecFound,
 IfCondRecNotFound,
 ManualWithDefault,
 Manual
}

Defines the edit mode of a condition.

Never

Condition cannot be edited.

IfCondRecFound

Condition can be edited when found.

IfCondRecNotFound

Condition can be edited when not found.

ManualWithDefault

Condition can be edited and has a default value.

Manual

,Condition can be edited.

5.6.1.77 RoundingRule

Synopsis:

enum RoundingRule {
 NoRounding,
 RoundToNearest,
 RoundUp,
 RoundDown
}

Defines the rounding rule of a condition.

NoRounding

No rounding.

RoundToNearest

The system will round toward the nearest neighbour. In case of equidistant neighbours the system
will round towards the even neighbour. This rounding mode is also called Banker’s Rounding.

RoundUp

With this rounding mode the system will round towards the nearest neighbour unless both neigh-
bours are equidistant, in which case the system will round up (away from zero).

RoundDown

,
This rounding mode rounds towards the nearest neighbour unless both neighbours are equidistant.
In that case the system will round down (towards zero).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 152 of 298

EAIWS 4.16

5.6.1.78 TaxSchemeDescription

Synopsis:

struct TaxSchemeDescription {
 string identifier;
 string country;
 string region;
 string variantName;
}

Short information about available tax schemes. Result of operation listTaxSchemes (§5.6.3.66).

5.6.1.79 TaxScheme

Synopsis:

struct TaxScheme {
 string identifier;
 string country;
 string region;
 string variantName;
 string currency;
 TaxType[] taxTypes;
 OrderedTax[] orderedTaxes;
}

Detailed information about tax scheme. Result of operation getTaxScheme (§5.6.3.67).

TaxTypResolveURIsOptionse
Synopsis:

struct TaxType {
 string identifier;
 string rateUnit;
 string abbreviation;
 string name;
 TaxCategory[] taxCategories;
}

The value of attribute rateUnit of complex type taxType is either % in case of relative taxes, or
<cy>/<uom>, where <cy> is a currency code and <uom> is an UNECE unit of measure. With the current
implementation of pricing procedures, both weight and volume units are meaningful.

5.6.1.80 OrderedTax

Synopsis:

struct OrderedTax {
 string typeId;
 int order;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 153 of 298

EAIWS 4.16

5.6.1.81 TaxCategory

Synopsis:

struct TaxCategory {
 string identifier;
 string name;
 decimal* rate;
 boolean rateReadOnly
}

5.6.1.82 TaxInfo

Synopsis:

struct TaxInfo {
 string taxType
 string taxCategory;
}

Returned by the operation getTaxInformation (§5.6.3.70). Represents the known tax information for an
article item. The tax information consists of a possibly empty list of pairs of tax type and tax category
identifiers (like VAT and reduced_rate), specifying the tax category to be used by this article for the tax
type.

5.6.1.83 OFMLUpdateState

Synopsis:

enum OFMLUpdateState {
 Unknown,
 UpToDate,
 Updatable,
 Migratable,
 Invalid,
 NoCatalog,
 MultipleCatalogs
}

The update state determined by EAIWS for a composite article item depends on the configuration of the art-
icle item, the set of registered OFML catalogs and the product data referenced by these catalogs, and a pos-
sibly specified subset of OFML catalogs.

The following update states are defined:

Unknown

The update state has not been determined yet. See operation getItemProperties
(§5.6.3.32) for more information.

UpToDate

The data of the basket article item has been copied by this session from an OFML article item. Thus
it is known that the current configuration of the basket article item is supported by at least one of the
registered OFML catalogs, and that EAIWS should always be able to re-instantiate an OFML article
with exactly the same configuration.

Updatable

Catalog selection resulted in exactly one OFML catalog, and it has been determined that the product
data referenced by this catalog allows the re-instantiation of an OFML article such that the
configuration of the OFML article is exactly the same as the configuration of the basket article item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 154 of 298

EAIWS 4.16

Migratable

Like Updatable, except that the variant code of the OFML article item may differ from the original
variant code stored at the basket article item.

Invalid

Catalog selection resulted in exactly one OFML catalog, and it has been determined that the product
data referenced by this catalog does not contain the required OFML article (there is no OFML article
with the same base article number).

NoCatalog

Catalog selection did not find a matching OFML catalog.

MultipleCatalogs

Catalog selection found multiple matching OFML catalogs.

The process of 'catalog selection', as used above in the description of individual update states, determines
zero or more OFML catalogs that contain the same OFML package as specified by the program ID stored for
the basket article item (i.e. a package with the same OFML manufacturer and program IDs).

The 'updateBasketArticles' operation described below allows the specification of a set of catalog IDs. If this
set is not empty, it is used to further restrict the set of catalogs determined above (catalogs whose catalog ID
is not contained in the set of specified catalog IDs are removed).

If, at this point, the set of catalogs contains more than one catalog, a catalog profile ID is stored at the article,
and the catalog profile ID is equal to the catalog ID of one of the catalogs selected so far, all catalogs other
than the catalog identified by this catalog ID are moved from the set of selected catalogs.

The remaining set of catalogs is the result of catalog selection as used in update state descriptions.

(The process of catalog selection is still subject of consideration and may be modified in future versions of
EAIWS.)

5.6.1.84 UpdateBasketArticleResult

Synopsis:

struct UpdateBasketArticleResult {
 BItemId itemId;
 OFMLUpdateState updateState;
}

This type has two (required) attributes: itemId and updateState. An element of this type is returned by
the updateBasketArticles (§5.6.3.80) operation for each basket main article item the operation oper-
ated upon.

itemId

The itemId is the ID of the basket main article item.

updateState

The updateState is the update state of the (whole composite) article item after the operation
updateBasketArticles. Thus, if the article item has been updated or migrated, the update state
is UpToDate.

5.6.1.85 UpdateBasketArticlesOptions

Synopsis:

struct UpdateBasketArticleOptions : ItemSelectionOptions {
 boolean update;
 boolean migrate;
 boolean recalculate;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 155 of 298

EAIWS 4.16

 date priceDate
}

This type extends the type ItemSelectionOptions. Additional optional boolean attributes are update
and migrate. These attributes can be used to control whether or not the operation should update and/or
migrate articles, or just determine the update state.

If the attribute recalculate is set to true, the calculations of selected article items not updated or
migrated are recalculated. The calculations of updated or migrated article items are always recalculated.
Recalculation includes execution of access methods. Note that, actually, the updateBasketArticles
(§5.6.3.80) operation just invalidates the calculations. Recalculation happens on demand the next time
affected calculation data is requested.)

Selection of article items for recalculation, updated or migrate works as followign: if one or more articles of a
composite article have been selected, the behavior depends on whether or not the main article is among the
selected articles, and (if not), whether or not the wholeComposite flag is set. In any case, either all articles
of a composite article are recalculated, migrated or updated, or none.

The default value of update is true, whereas the default value of migrate and recalculate is false.

5.6.1.86 DisplayText(Basket)

Synopsis:

struct DisplayText extends string (string lang)

5.6.1.87 ExchangeRate

Synopsis:

struct ExchangeRate {
 string currency;
 decimal rate;
}

The attribute currency contains the currency code. The attribute rate contains the exchange rate. If the
attribute rate is missing, the exchange rate is unknown or invalid.

5.6.1.88 Vector2

Synopsis:

struct Vector2 {
 double x;
 double y;
}

5.6.1.89 Vector3

Synopsis:

struct Vector3 {
 double x;
 double y;
 double z;
}

This type is used to represent a position (through a location vector) or a rotation axis.

In the coordinate system assumed by the basket web service interface, the x-axis points to the right, the y-
axis points up, and the z-axis points to the front.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 156 of 298

EAIWS 4.16

5.6.1.90 Rotation

Synopsis:

struct Rotation {
 double angle;
 Vector3 axis;
}

The axis parameter is a vector that indicates the direction of an axis of rotation, and the angle describes the
magnitude of the rotation about the axis. The rotation occurs in the sense prescribed by the right-hand rule.

The angle is measured in radian. The axis, when returned from EAIWS, is a unit vector unless the angle is a
multiple of 2pi. An axis passed to EAIWS does not need to be a unit vector, but |axis| must be non-null unless
the angle is zero.

5.6.1.91 ComposableGeometryProperties

Synopsis:

struct ComposableGeometryProperties {
 BItemId itemId;
 boolean enabled;
 Vector3 position;
 Vector3 scale;
 Rotation rotation;
 string geometry;
}

itemId

The ID of the basket item having this set of composable geometry properties. This field is used if and
only if the composable geometry properties are part of item properties returned for a view item.

enabled

This optional property controls whether or not the composable geometry item, when used as a set-
article part, will be considered or ignored during composition of the set-article geometry.

position

This optional property indicates where the geometry of the composable geometry item is to be
positioned when the geometry of the set-article is composed. The default value of this property is
x=0, y=0 and z=0.

scale

Operation getItemProperties (§5.6.3.32) returns this element for composable geometry
items with a scalable geometry (only user article items right now). Its absence indicates that the
geometry is not scalable.

Operation setItemProperties (§5.6.3.33) ensures that scale.x, scale.y and scale.z
are finite (i.e. neither infinite nor NaN). Other than that the operation ignores this element unless the
item is a composable geometry item47. Use with a basket main article item causes an error, even if
the scaling factor is one in each direction. Thus user article items are the only items that let the client
specify scaling factors for the geometry.

The scaling factors are applied (or are supposed to be applied) to the geometry before it is rotated
and translated.

rotation

This optional property indicates the rotation of the geometry of the composable geometry item when
the geometry of the set-article is composed. Rotation occurs around the origin of the geometrie's
local coordinate system. The default value of this property indicates no rotation.

47 Basket main article items and user article items are composable geometry items.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 157 of 298

EAIWS 4.16

geometry

This optional property can be used with user article items to store the URI of an imported or
generated geometry.

If the item is a user article item, the item property enabled has been set to true, the item property
geometry contains a valid geometry URI, and the user article item is part of a set-article item, then
the specified geometry becomes part of the composite geometry of the set-article item.

Supported geometry formats are EOX, GFX, DWG, DXF, OBJ, GEO and 3DS. Import of materials is
supported for EOX, GFX, DWG and DXF only.

If the getItemProperties operation returns composable geometry properties, then the value of
the geometry element will be either an empty string or an URI with scheme imp or gen.

If the setItemProperties operation encounters a non-empty value for the geometries
element, the operation fails without modifying any properties if:

• this value does not adhere to the URI syntax

• is a relative URI

• has a scheme other than imp or gen

• is an URI not known by the current session (i.e. has not been imported imported or
generated by the current session)

• if the item whose properties are to be set does not allow the explicit specification of a
composable geometry part.

5.6.1.92 CondGroupSelectionOptions

Synopsis:

struct CondGroupSelectionOptions : ItemSelectionOptions {
 boolean? ExcludeInactiveItems;
 boolean? IncludeInactiveItems;
 boolean? groupPseudoArticleParts
}

Options excludeInactiveItems and includeInactiveItems are mutually exclusive. Operations fail
with a BasketServiceFault if both are set to true. Other than that the values are ignored if the set of
item IDs passed to the operation and the specified ItemSelectionOptions do not result in construction
of a group calculation.

If both options are unspecified, the default values of excludeInactiveItems and
includeInactiveItems are true and false, respectively. Otherwise, the default value of either option
is false.

If excludeInactiveItems and includeInactiveItems are both false, group calculations ignore
item calculations of inactive items (i.e. alternative positions) if and only if the group contains at least one
active item.

If excludeInactiveItems is true, group calculations always ignore calculations of inactive items.

If includeInactiveItems is true, group calculations do not ignore calculations of inactive items, i.e.
group condition values are computed as the sum of item conditions values of both active and inactive items.

The option groupPseudoArticleParts is used by all operations with a parameter of type
CondGroupSelectionOptions or GetPriceCalculationSheetOptions to a) enforce the use of
group calculations for all pseudo articles and b) add all sub-articles of pseudo-articles to group calculations
referencing a pseudo article.

The default value of this option is false (traditional behavior).

If this option is true, the behavior of these operations is changed as follows:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 158 of 298

EAIWS 4.16

• If the operation operates on or returns a single calculation, and the effective set of selected items
consists of a single pseudo article, the operation enforces the use of a group calculation instead of
an item calculation.

• Construction of group calculations referencing a pseudo article includes all (not just direct) sub-art-
icle items of the pseudo article item (applies to all pseudo articles, even those which are sub-articles
themselves).

• Operation getPriceCalculationSheets (§5.6.3.57) returns one calculation for each element of
the effective set of selected items. Depending on the item type the behavior is as follows:

◦ non-pseudo article: construction of an item calculation

◦ pseudo article: construction of a group calculation referencing all sub-articles (independent of
their position in the basket or view structure)

◦ folder: construction of a group calculation referencing all article items that are descendants of the
folder item in the basket or view structure

5.6.1.93 ColumnType

Synopsis:

enum ColumnType {
 Undefined,
 Builtin,
 Text,
 Number,
 Boolean,
 Image,
 EClass
}

This enumeration type defines the type of user defined columns. It places certain restriction on the data that
can be stored in fields of these columns.

Undefined

This type should never occur.

Builtin

Used for predefined columns that cannot be modified or deleted, have well defined column IDs, and
are further identified by enumeration type BasketItemAttrId.

 Text

Allows storage of arbitrary character sequences.

Number

Allows storage of character sequences that can be parsed as decimal floating point numbers. After
removal of leading and trailing white space, values stored in columns of this type must be either
empty strings or must match one of the following regular expressions (ignoring case):

 [+-]?inf(inity)?

 [+-]?nan

 [+-]?[0-9]+(\.[0-9]*)?(e[+-]?[0-9]+)?

 [+-]?\.[0-9]+(e[+-]?[0-9]+)?

If they match one of these regular expressions, they are converted to an IEEE 754-2008 Decimal64,
the formatted as a string. The result of formatting matches one of the regular expressions listed
above. Other than that, the result is implementation-defined.

Note that two numbers with identical values may end up with different string representations due to

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 159 of 298

EAIWS 4.16

different quantum exponents or, if data is exchanged between different applications, due to different
formatting rules.

Also note that P-BK and derived applications use Decimal128 Instead of Decimal64, and other
applications may use still other internal representations. This is acceptable as long as they are
prepared to deal with any character sequence matching one of the regular expressions listed above.

Boolean

Allows storage of either "0" or "1" (leading and trailing white space will be removed by operation
setItemFields (§5.6.3.90)).

Image

Allows storage of an URI reference to an image. Once leading and trailing white space has been
stripped, the remaining character sequence must be an empty string or parsable as an absolute URI
with a scheme of either imp, gen, file or http. Furthermore, URIs with scheme imp or gen must
be opaque (i.e. not hierarchical), whereas URIs with scheme file or http must be convertible to
an URL.

No matter what URI scheme is used, there is no requirement that the identified resource actually
exists. If it exists, it should be an image file, preferably JPEG or PNG.

Once an URI passed validation, it is converted to US-ASCII before stored in the field (RFC 2396 is
limited to US-ASCII).

EClass (deprecated)

Had been used to store eCl@ss classifications

5.6.1.94 BasketItemAttrId

Synopsis:

enum BasketItemAttrId {
 Undefined,
 UserDefined,
 Manufacturer,
 Series,
 ArticleNumber,
 Description,
 Quantity,
 SinglePurchasePrice,
 TotalPurchasePrice,
 SingleSalesPrice,
 TotalSalesPrice,
 SingleNetPrice,
 TotalNetPrice,
 SingleGrossPrice,
 TotalGrossPrice,
 Position,
 CatalogImage,
 GeneratedImage,
 ArticleImage
}

This enumeration type defines an identifier for predefined columns. The value Undefined should never
occur. The value UserDefined is used for user-defined columns. All other IDs identify a predefined column.

For each predefined column ID, each basket has exactly one column. Fields of predefined columns can be
read, but not written. Predefined columns have a well known column ID.

Manufacturer

Column ID: 69ec3fa0-795a-11d6-9c21-00e029099a4b

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 160 of 298

EAIWS 4.16

This column contains the commercial manufacturer ID, if available, or an empty string.

Series

Column ID: 6d302258-795a-11d6-9c21-00e029099a4b

This column contains the series ID, if available, or an empty string.

ArticleNumber

Column ID: 71803794-795a-11d6-9c21-00e029099a4b

This column contains the base article number, if available, 0or an empty string.

Description

Column ID: 745802e4-795a-11d6-9c21-00e029099a4b

This column contains the short description of article items or the label of the item for all other item
types. The short description of article items is determined based on the currently configured list of
effective product data languages.

Quantity

Column ID: 76eda34c-795a-11d6-9c21-00e029099a4b

For items with a valid quantity (article items with a finite quantity) this column contains the quantity
formatted as a decimal number with at least two and at most three fraction digits. Otherwise it
contains an empty string.

Three fraction digits are used if the exact value of the quantity cannot be expressed using only two
fraction digits.

Decimal separator, grouping separator and grouping size are determined based on the session's
current locale.

SinglePurchasePrice

Column ID: 7d21a60a-795a-11d6-9c21-00e029099a4b

For article items, this column contains the purchase price. Otherwise, it contains an empty string.

See below for information about formatting of prices.

The purchase price of an OFML article item is usually the purchase price provided by the OFML
product database. If, however, the article item was part of a project produced by some other
application (like P-BK), an explicitly specified gross purchase price may be used instead.

TotalPurchasePrice

Column ID: 7fe484fc-795a-11d6-9c21-00e029099a4b

For article items, this column contain the product of purchase price and quantity.

SingleSalesPrice

Column ID: 82efa014-795a-11d6-9c21-00e029099a4b

For article items, this column contains the sales price. Otherwise, ti contains an empty string.

See below for information about formatting of prices.

The sales price of an OFML article is the sales price provided by the OFML product database.

SingleNetPrice

Column ID: 8831eeec-795a-11d6-9c21-00e029099a4b

SingleGrossPrice

Column ID: 8dcf0592-795a-11d6-9c21-00e029099a4b

The current implementation uses the value of the single sales price column as the value of these
columns. This may be changed in future versions of EAIWS.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 161 of 298

EAIWS 4.16

TotalSalesPrice

Column ID: 8541eb1a-795a-11d6-9c21-00e029099a4b

For article items, this column contains the product of sales price and quantity.

TotalNetPrice

Column ID: 8b51fbe4-795a-11d6-9c21-00e029099a4b

TotalGrossPrice

Column ID: 90895bc0-795a-11d6-9c21-00e029099a4b

The current implementation uses the value of the total sales price column as the value of these
columns. This may be changed in future versions of EAIWS.

Position

Column ID: 81d12edc-853a-11d6-9c21-00e029099a4b

With the current implementation this column always contains an empty string. This is because
position numbers for items are provided by the basket views, not the basket itself. Basket views,
however, are not supported yet.

CatalogImage

Column ID: 9c9ea8ea-20ce-11d7-9c21-00e029099a4b

In case of OFML article items, this column contains an image URI for an image from an XCF or OAS
catalog if such an image has been found for this article. Otherwise, it contains an empty string.

Unless resolved, the URI will usually be a file URL, although there is no guarantee this won't change
in future versions of EAIWS.

GeneratedImage

Column ID: 6a66160c-da62-11d8-b9d6-00e081513ada

In case of OFML article items, this column contains an image URI for an image dynamically rendered
for the current configuration of this article item unless rendering of images has been suppressed or
disabled. Otherwise, it contains an empty string.

The images contained in this column are the sames images as returned with an empty tag by the
getImages (§5.6.3.42) operation. However, other than the getImages (§5.6.3.42)
operation, callers of operation getItemFields (§ 5.6.3.89) can control if generated images should
be fetched from the global cache if not already referenced by the item, or, if not found in the global
cache, should be generated. See also GetItemFieldsOptions (§ 5.6.1.98) for more information.

If an image needs to be generated, the rendering settings used are the same as those used by the
getGeneratedImage (§5.6.3.40) operation when invoked with no options. Other than P-BK
and derived applications, the current implementation makes no attempt to reuse the settings from
the last image generated (for a different configuration) for this position.

 ArticleImage

Column ID: 73bd68f4-da62-11d8-b9d6-00e081513ada

For OFML, OCD and user article items, this column contains the value of the GeneratedImage
column, if not empty, and the value of the CatalogImage column otherwise. For all other basket
items, it contains an empty string.

Formatting of prices:

Finite prices are formatted as a fixed point decimal number followed by a SPACE (U+0020) and the ISO
4217 currency code. As a special case, if the amount is zero, the SPACE and currency code may be missing.

The amount is formatted using either the default number of fraction digits of the currency, or one more
fraction digit if the amount cannot be expressed exactly with the default number of fraction digits.

Decimal separator, grouping separator and grouping size are determined based on the session's current
locale.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 162 of 298

EAIWS 4.16

The formatting of infinite and invalid prices is highly locale-dependent and subject to change.

5.6.1.95 ColumnId

Synopsis:

typedef UUID ColumnId;

ColumnId uniquely identifys a basket column. Predefined columns always have the same ID. See
BasketItemAttrId (§5.6.1.94) for the values of predefined column IDs.

5.6.1.96 BasketColumn

Synopsis:

struct BasketColumn {
string name,
string title,
string defaultValue
string id,
ColumnType type,
BasketItemAttrId itemAttrId,
boolean removable,
boolean editable,
string defaultColumn,
int minWidth,
double weight,
boolean readOnly

 }
This complex type describes a single basket column. It has the following attributes and elements:

id (attribute)

The UUID that identifies the column. Predefined columns always have the same ID. See
BasketItemAttrId (§5.6.1.94) for the values of predefined column IDs.

type (attribute)

The type of user-defined columns, or Builtin for predefined columns.

itemAttrId (attribute)

Type of predefined columns, or UserDefined for user-defined columns.

removable (attribute)

True if the column can be removed with operation removeBasketColumns (§5.6.3.86)

editable (attribute)

True if the column configuration can be changed with operation setBasketColumnProperties
(§5.6.3.88)

defaultColumn (attribute)

The ID of a column that provides the default value for this column

minWidth (attribute)

Exists for P-BK compatibility; In P-BK, this property contains the minimum width of the article table
column in pixel. If used by other applications, the value should be interpreted relative to the font size
used in the article table. The actual column width should be chosen so it allows display of about the
same number of characters as an 8 point Arial font assuming 96 DPI and the given number of pixels.

weight (attribute)

Exists for P-BK compatibility; In P-BK, the value of this property determines the initial width of
columns relative to each other.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 163 of 298

EAIWS 4.16

readOnly (attribute)

True if the column is read-only (i.e. operations setItemFields (§5.6.3.90) and
resetItemFields (§5.6.3.91) cannot be used with this column)

name (element)

The name of the column

title (element)

The title of the column to be displayed in the header of the article table

defaultValue (element)

Optional default value. Default values may contain variable references. See description of complex
type ItemField (§5.6.1.97) for more information about variable references.

Except for the id attribute, all attributes and elements are optional. For more information, see documentation
of operations getBasketColumns (§Fehler: Verweis nicht gefunden), addBasketColumns (§5.6.3.87),
and setBasketColumnProperties (§5.6.3.88).

5.6.1.97 ItemField

Synopsis:

struct ItemField {
 BItemId itemId;
 ColumnId columnId;
 string data;
}

This complex type holds the date of a single field (the intersection of basket column and item). It has the
following attributes and elements:

itemId (attribute)

the ID of the basket item

columnId (attribute)

the ID of the basket column

data (element)

the data stored in the field, or an empty string if no data has been stored. The descriptions of
enumeration types ColumnType (§5.6.1.93) and BasketItemAttrId (§5.6.1.94) contain
information about the format of data stored in user-defined and predefined columns.

All attributes and elements are required.

Variable References:

The default values of user defined columns, as well as the values set for fields of user defined columns of
type Text and EClass, may contain zero or more variable references embedded in their value. Values set
for fields of user defined columns of type Number may consist of a single variable reference.

Variable references start with a dollar sign (U+0024), immediately followed by an left parenthesis (U+0028).
They end with the next right parenthesis (U+0029).

Most variable references can only be used for items of type Article, Aggregate, PartialPlanning,
UserArticle and OCDArticle. The Label reference can be used for any item type.

Label

the label of the item, corresponding to the label element of complex type ItemProperties
(§5.6.1.20)

ManuName, ManufacturerName

the manufacturer name

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 164 of 298

EAIWS 4.16

ManuId, ManufacturerId

the commercial manufacturer id

SeriesName

the series name

SeriesId

the (commercial) series ID

ArtNr

the default article number; Depending on information provided by OFML data, this is either the base
or final article number. For user article items with a non-empty final article number it is the final article
number, and the base article number otherwise.

BaseArtNr

the base article number

 FinalArtNr

the final article number

VarCode

the variant code

Text

the default description of the article; Depending on information provided by OFML data, this is either
the short description, the long description, or the concatenation of both, delimited by a single line
feed (U+000A) character.

For user article items with a non-empty long description, the long description is used, otherwise the
short description.

ShortText

 the short description of the article

LongText

the long description of the article

VarText, VariantText

the feature description of the article; Whereas short and long description solely depend on the article
(base article number), the feature description depends on the current configuration of the article.

VarCodes, VariantCodes

coded features of OFML articles; The value is a list of key/value pairs, where subsequent key/value
pairs are separated by a single line feed (U+000A) character, and key and value are separated by an
equals sign (U+003D). The key is always non-empty, the value may be empty.

The encoded features correspond the the features returned by OFML method
getAllArticleFeatures(NULL).

CatImage, CatalogImage

an empty string or an URI for the catalog image. See CatalogImage value of enumeration
BasketItemAttrId (§5.6.1.94) for more information.

GenImage, GeneratedImage

an empty string or an URI for the generated image. See GeneratedImage value of enumeration
BasketItemAttrId (§5.6.1.94) for more information.

ArtImage, ArticleImage

an empty string or an URI for the article image. See ArticleImage value of enumeration
BasketItemAttrId (§5.6.1.94) for more information.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 165 of 298

EAIWS 4.16

SinglePurchasePrice

SingleSalesPrice

SingleNetPrice

SingleGrossPrice

TotalPurchasePrice

TotalSalesPrice

TotalNetPrice

TotalGrossPrice

the named price of the article; For more information, see documentation of corresponding value of
enumeration BasketItemAttrId (§5.6.1.94).

PackInfo:<suffix>

packaging information

<suffix> consists of the name of a packaging property, optionally followed by a conversion
specification enclosed in left and right square brackets (U+005B, U+005D).

The following table contains the supported packaging property names and the default unit used to
report the value:

Width MTR
Height MTR
Depth MTR
Volume MTQ
TareWeight GRM
 NetWeight GRM
ItemsPerPackUnit C62
PackUnitsPerArticle C62
The following name is supported for backward compatibility:
TaraWeight GRM
The conversion specification, if present, must consist of a preferred unit code (UNECE unit of
measure), optionally followed by the specification of a precision. The precision specification must
consist of a colon (U+003A), an optional minus sign (U+002D), and a non-empty sequence of
decimal digits (U+0030..U+0039). The precision is clamped to range [0, N], where N is the number of
significant decimal digits supported by the used IEEE 754-2008 decimal format (the current
implementation uses N=16).

The variable reference expands to an empty string if the position does not have information about
the named packaging property, the packaging property name is unknown, or the conversion
specification is invalid.

Otherwise, if the variable reference contains a conversion specification, an attempt is made to
convert the property value to the specified unit. If conversion fails (as would be the case for
conversion from MTR to GRM), the original value will be used.

The amount of the value will then be converted as a fixed point decimal number. If the variable
reference specifies a precision, then exactly as many fraction digits will be produced. If the variable
reference does not specify a precision, then there will be exactly as many faction digits as necessary
to preserve the value. If no fraction digits are produced, there will be no decimal separator either.

Formatting is done according to the rules of the session's locale. The exact rules for formatting,
including the use of grouping, is implementation-defined.

Finally, if the unit is not 'C62', then a single space character (U+0020) and the unit will be appended
to the formatted value.

Tax:<suffix>

either a particular tax or the position total of all taxes;

<suffix> consists of the name of the pricing procedure and the name of the condition type, separated
by colon (U+003A).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 166 of 298

EAIWS 4.16

If the name of the pricing procedure consists of a single asterisk (U+002A) then it matches the name
of an active pricing procedure if and only if there is exactly one active pricing procedure. A leading
asterisk followed by a colon may be omitted.

If the condition type name consists of a single asterisk, then the total of all tax lines of the selected
pricing procedure is used. If at least one line of the pricing procedure is tagged with TAX then all
lines tagged with TAX are considered tax lines. Otherwise, all condition lines with condition class TAX
are considered tax lines.

If the condition type name names a particular condition type, then the line for this condition type is
used even if the condition class is not TAX.

Lines selected from the pricing procedure that do not exist in the price calculation of the position are
ignored. If no lines have been selected, or all selected lines are ignored, the reported monetary
amount will be null.

If <suffix> does not adhere to the syntax specified above, no pricing procedure can be selected, or
the selected pricing procedure does not have the specified condition type, then an invalid monetary
amount is reported

TaxPerUnit:<suffix>

tax per sales unit; This is like Tax:<suffix>, except that the determined value is divided by the
position's quantity.

Note that, depending on the calculation rule of the taxes involved, this value may differ from the
value computed for Tax:<suffix> for an otherwise identical position with a quantity of one. Also
note that this value cannot be computed, and an invalid monetary amount will be reported, if the
quantity of the position is zero.

TaxRate:<suffix>

the tax rate, consisting of condition amount and possibly quantity relation

<suffix> is interpreted as described for Tax:<suffix>, except that an asterisk must not be used for
the condition type name.

Access to the variable first determines amount and quantity relation. Both default to an invalid value.

If a pricing procedure line has been selected, and the price calculation of the position contains this
line, then the line's values are used for amount and quantity relation. Note that depending on the
calculation rule, the quantity relation may be invalid (for example in case of Percent and
FixedAmount).

If a pricing procedure line has been selected, but the line does not exist in the price calculation of the
position, then the amount will be zero percent if the calculation rule of the condition type is Percent,
and null otherwise.

Once amount and quantity relation have been determined, they are formatted as just the amount if
the quantity relation is invalid, or as amount and quantity relation, in that order, separated by space,
slash and space (U+0020, U+002F, U+0020).

Note that, while P-BK and derived applications also support Tax:<suffix>, TaxPerUnit:<suffix> and
TaxRate:<suffix>, they interpret <suffix> in a different way. Also note that the TaxCategory variable
supported by P-BK is not supported at all by EAIWS.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 167 of 298

EAIWS 4.16

5.6.1.98 GetItemFieldOptions

Synopsis:

struct GetItemFieldOptions : ItemSelectionOptions {
 boolean *useDefault;
 boolean *expandVariables;
 boolean *resolveURI;
 boolean *useImageCache;
 boolean *generateImages;
}

The options parameter may specify the following options to control field access and representation of the
return value:

 useDefault

if true, and a field has no value, than the default value of the field (if any) will be used instead

expandVariables

if true, variables found in the field (or the field's default value) are expanded

resolveURI

if true, and the field is of a predefined column with attribute ID CatalogImage, ArticleImage or
GeneratedImage, or a user defined column with type Image, an attempt is made to interpret the
field's value as an absolute URI and, if the URIs scheme is file, gen or imp, to produce an HTTP
URL for this URI. If a HTTP URL could be produced, then the HTTP URL will be returned as the
field's value. Otherwise, the original value of the field will be returned.

useImageCache

If specified and true, try to fetch the generated image from the global cache if the operation
getItemFields has been called to return a generated image or article image and the current
position does not already reference a generated image.

Default value: false

generateImages

If specified and true, try to fetch the generated image from the global cache if the operation
getItemFields has been called to return a generated image or article image and the current
position does not already reference a generated image. Generate the image if it has not been found
in the cache.

Default value: false

Note: It is not possible to bypass the cache with useImageCache set to false and generateImages set to true.
The latter one set to true always causes a cache lookup before the image is eventually generated.

5.6.1.99 PasteOptions

Synopsis:

struct PasteOptions {
 boolean reuseItemIds;
 boolean returnOriginalItemIds;
 boolean ignoreComposableGeometries;
}

The complex type PasteOptions defines two optional attributes:

reuseItemIds

Default: true

If false, newly inserted items will have new unique item IDs. If true, newly inserted items will have

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 168 of 298

EAIWS 4.16

the item ID found in the OBX stream unless there is already another item using this item ID (in which
case a new unique item ID will be used).

returnOriginalItemIds

Default: false

If false, the sequence returned by the paste operation contains the item IDs of all newly inserted
items. If true, the sequence contains twice as many entries. Entries at even indices (zero-based)
contain IDs of newly inserted items, whereas entries at odd indices contain the corresponding item
ID of the item as found in the OBX stream.

IgnoreComposableGeometries

Default: false

If set to true, operations paste (§5.6.3.52) and pasteContainer ignore
<composableGeometry/> elements.

The default values are used if no options argument has been passed to paste, or if the attribute has not
been specified.

5.6.1.100 PasteContainerOptions

Synopsis:

struct PasteContainerOptions : PasteOptions {
 boolean *setArticleIds;
 boolean *geometryIds;
}

Can be used as argument of operation pasteContainer (§5.6.3.53).

The optional attributes setArticleIds and geometryIds of type boolean control whether or not re-
turned instances of complex type BasketItem contain set-article IDs (and set-article part IDs) and geometry
IDs (if available).

The default value of these options is false.

5.6.1.101 ItemAppData

Synopsis:

struct ItemAppData {
 BItemId id;
 string*[] data;
}

5.6.1.102 OAPAction

Synopsis:

struct OAPAction {
 string id;
 OAPObjectDefinition[] objects;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 169 of 298

EAIWS 4.16

5.6.1.103 OAPActionChoiceAction

Synopsis:

struct OAPActionChoiceAction : OAPAction {
 OAPViewType viewType;
 OAPTileSize *tileSize;
 OAPActionListItem[] actions;
 string *title;
}

The complex type OAPActionChoiceAction used to return information about Action-Choice actions.

viewType

enum OAPViewType {
 List,
 Tile
}

tileSize

The attribute tileSize will be present if and only if attribute viewType has value Tile.

enum OAPTileSize {
 Small,
 Medium,
 Large
}

actions

struct OAPActionListItem {
 OAPAction action;
 string *text;
 string *imageFile;
 string[] actionIds;
}

Attribute imageFile, if present, contains an URL for the image file.

The field actionIds contains the list of action IDs if multiple action IDs per action list item are
enabled (see description of OAP client capability MultiActionChoice § 5.6.1.106).

title

This field contains the action choice dialog title. It is present if and only if the dialog has a nonempty
title.

5.6.1.104 OAPArticleSpecMode

Synopsis:

enum OAPArticleSpecMode {
Self,
Explicit

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 170 of 298

EAIWS 4.16

5.6.1.105 OAPPropChangeAction

Synopsis:

struct OAPPropChangeAction : OAPAction {
 OAPPropChangeType type;
 string property;
 string value;
}

The information returned by OAPPropChangeAction is not supposed to be used by the client to set the
property value or change the property state. Instead, clients should use oapProcessActions to execute
property change actions48.

enum OAPPropChangeType {
 Value,
 Visibility,
 Editability
}

5.6.1.106 OAPClientCapability

Synopsis:

enum OAPClientCapability {
 MultiActionChoice,
 PlanningMode
}

A set of values of this enumeration is used to specify OAP-related capabilities of the client. There is one
value for each capability. The client calls operation oapSetClientCapabilities (§ 5.6.3.101) to in-
form the server about the capabilities it supports.

No new capability will be defined for new server-side OAP features if they only results in new data being re-
turned to the client that can safely be ignored49.

The current version of EAIWS defines the following capabilities:

MultiActionChoice

Staring with OAP draft 16, OAP action list items (henceforth called action choices) contain a list of
action IDs instead of a single action ID.

If the MultiActionChoice capability has not been set then no OAPActionListItem is returned
for an action choice that contains multiple action IDs, or for an action choice with a single action ID if
the referenced action is inactive. The action-field of OAPActionListItem always contains the com-
plete action data.

If capability MultiActionChoice has been set then an OAPActionListItem is returned for each
visible action choice50. Field action of OAPActionListItem is missing. Instead, field actionIds
is used to return one or more action IDs (which may reference inactive actions51). Once an action
choice has been selected the corresponding list of action IDs can be processed with operation
oapProcessActions.

PlanningMode

Starting with OAP draft 16, interactor definitions contain a flag that indicates whether or not the ac-
tions attached to the interactor require the user interface to support planning mode. Supporting plan-

48 The client has no information about the property class, and finding out the property class would cause undue overhead on the server
side. Furthermore, the returned value is an OAP expression that must be evaluated to determine the new property value, which
cannot be done by the client, at least not in the general case. And finally, the client does not have access to an API to modify the
property state.

49 Clients are expected to ignore data returned with unknown XML attributes and elements.
50 as determined by the new (optional) condition of the action choice
51 Action choices with no condition, or with a satisfied condition, are expected to reference at least one active action

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 171 of 298

EAIWS 4.16

ning mode means that the user interface is able to simultaneously display, and allow interaction with,
multiple top-level objects.

If OAP client capability PlanningMode has not been set then the server does not return interactors
that require the user interface to support planning mode according to the aforementioned flag. If cap-
ability PlanningMode has been set then all active interactors are returned.

5.6.1.107 OAPMediaSource

Synopsis:

enum OAPMediaSource {
PIM,
YouTube

}

5.6.1.108 OAPAttachAreasPlacement

struct OAPAttachAreasPlacement : OAPPlacement {
 OAPObjectDefinition referenceObject; // element
 string[] refObjectAttachAreaIds; // element
 string newObjectAttachAreaId; // element }

referenceObject

definition of reference object as found in OAP data

refObjectAttachAreaIds

list of IDs of attach areas of the reference object as found in OAP data

newObjectAttachAreaId

attach area ID of new object as found in OAP data

5.6.1.109 ViewDisplayMode

Synopsis:

enum ViewDisplayMode {
 Undefined,
 Sorted,
 Planning
}

The view display mode is the primary mode defining the structure of basket views. The following enumera-
tion values are defined:

Undefined

Reserved for internal use.

Sorted

This display mode mostly ignores the structure of the basket item tree. Instead it assumes a basket
item tree that looks as follows:

▪ The top folder continues to be the top folder.

▪ Basket folder items that are not part of a set-article are children of their nearest basket folder
item ancestor52 that is not part of a set-article either.

▪ Main article items that are not part of a set-article and set-article items are children of their
nearest basket folder ancestor that is not part of a set-article either.

52 ancestor: parent and ancestors of parent

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 172 of 298

EAIWS 4.16

▪ Basket folder items and main article items that are part of a set-article are children of either
the set-article item or a basket folder item that is part of the same set-article, whichever is
their nearest ancestor in the original basket item tree. If there is no such ancestor, they are
children of the set-article item.

▪ Sub-article items are children of their main article item.

The actual tree of view items presented to the client may be further modified depending on other
view configuration options.

Siblings are sorted according to a configurable sort order. The default sort order is as follows:

1. All folders, sorted by name.

2. All partial plannings and set-articles, sorted by name.

3. All (other) articles, sorted by manufacturer, series, article specification (usually base art-
icle number, but may be final article number depending on product data), and descrip-
tion.

Right now there is no web service operation to query or configure the sort order.

Planning

The tree of view items reflects more or less the tree of basket items. The only exception are set-
article parts that may be hidden depending on view configuration option setArticleMode and the
collapsed state of the set-article item.

5.6.1.110 MergeMode

Synopsis:

enum MergeMode {
 None,
 Articles,
 Composites,
 CompositesStrict,
 SubArticles,
 Compact,
 ArticlesCompact
}

The merge mode is meaningful for views that use display mode Sorted. It controls whether or not, and how,
identical child items of the same parent are merged into a single item:

None

Items are never merged.

Articles

All equal basket article items are merged53. Basket article items are considered equal if they have the
same configuration (manufacturer and series ID, base article number, variant code, OFML variant
code, fields, additional texts, set-article IDs54) and calculation data.

There is usually no need for two article items to have the same quantity to be merged unless the
items have a calculation with an item condition (i.e. not a group or header condition) with calculation
rule FixedAmount.

The current implementation allows merging of main article items of composites with different sets of
sub-article items.

SubArticles

Only basket sub-article items are merged. Otherwise the criteria for merging are similar to merge
mode Articles.

Sub-article items of different composites may be merged if they happen to have the same view item

53 The current implementation does not merge main article items with sub-article items.
54 Both items are either part of the same set-article or are not part of a set-article.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 173 of 298

EAIWS 4.16

as their parent, as may happen if options expandPartialPlannings and/or expandAggregates
are true.

Compact

Merge mode Compact behaves more or less like merge mode SubArticles. The difference to
merge mode SubArticles is as follows:

▪ Expansion of partial plannings and aggregates is always disabled.

▪ Article view items that represent sub-article items (merged or not) do not get a position num-
ber assigned. Their IDs are never returned by the basket web service. Instead, their article
data is returned as part of the item properties of the main article item they belong to.

▪ Operation getAllItems returns, in addition to the basket item ID of the referenced main
article item, the basket item IDs of all sub-article items of this main article item.

▪ Operations getPriceCalculationSheet and getPriceCalculationSheets auto-
matically return group calculations if they are asked to return the calculation for an article
view item that represents a partial planning or aggregate with at least one sub-article item.

▪ The default value of option hideSubArticles of operation getGeneratedImage defaults
to false if the operation is called for a main article item.

5.6.1.111 SetArticleMode

Synopsis:

enum SetArticleMode {
 Expand,
 Collapse,
 Dynamic
}

The view configuration option setArticleMode controls the view’s handling of set-article parts. It is
honored in all view display modes.

Expand

Set-article parts are always visible.

Collapse

Set-article parts are never visible.

Dynamic

Set-article parts are hidden if and only if the set-article item is collapsed.55

5.6.1.112 PriceInfo

Synopsis:

struct PriceInfo {
 boolean inactive;
 decimal quantity;
 Quantity unitSize;
 Money *netPrice;
 Money *netValue;
 Money *tax;
 PriceInfoElement[] extraPriceInfos
}

inactive

The value of this field is usually false. A value of true indicates that this price information should

55 The ‘collapsed’ state of set-articles can be queried with operation getItemProperties (property setArticle.collapsed). It
can be modified with operations expandSetArticles and collapseSetArticles.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 174 of 298

EAIWS 4.16

be ignored when the total price of the document is computed (be it because the position is an altern-
ative position, part of a set-article, or part of sub-article data in case of merge mode Compact).

quantity

The quantity (in terms of unit size) of this item. Note that in case of sub-article items and merge
mode Compact, and for set-article parts, this is the quantity of this item relative to a single sales unit
of the main article or set-article.

unitSize

The sales unit size of this item. For set-article items and user article items the unit size is always one
piece (1 C62). The usual unit size for other types of article items is one piece too, but other unit sizes
may occur.

netPrice

The net price is the net value divided by the quantity as reported by the price information and thus
the net price of a single sales unit.

netValue

The net value corresponds to the value of the calculation line tagged with NET_VALUE. If the price in-
formation is queried for a view item referencing multiple basket items, as may happen in case of a
merge mode other than None, the net value is the sum of the net values of all item calculations, in-
cluding item calculations of sub-article items in case of merge mode Compact.

In case of article data returned for sub-articles in merge mode Compact, the net value is further ad-
justed to correspond to the net value of this item relative to a single sales unit of the main article.

tax

This element contains the total of all calculation lines tagged with TAX. If the price information is
queried for a view item referencing multiple basket items, as may happen in case of a merge mode
other than None, the returned tax is the sum of the taxes of all item calculations. In case of sub-art-
icle items and merge mode Compact the returned tax is further adjusted to correspond to the total
tax of this item relative to a single sales unit of the main article.

Fields netPrice, netValue and tax may be missing if no lines tagged with NET_PRICE and/or TAX have
been found in the calculation or values returned by the calculation are invalid.

5.6.1.113 GetPriceCalculationSheetOptions

Synopsis:

struct GetPriceCalculationSheetOptions : CondGroupSelectionOptions {
boolean sumUpComposite,
boolean itemCondAmountPerUnit,
boolean headerCondAmountPerUnit

}

sumUpComposite

If all selected items are part of one or more composite articles, all main and sub-article items of
these composite articles are selected, all composite articles are considered equal56, and the unit of
the sales unit size of the main article items is C62 (pieces), then a group calculation produced for all
selected articles will report a quantity equal to the total of the quantities of all main article items and a
sales unit size matching the sales unit size of the main article items.

Use of this option is more or less a precondition for use of options itemCondAmountPerUnit and
headerCondAmountPerUnit.

The default value of this option is false.

56 same configuration and calculation of main articles and corresponding sub-articles, but not necessarily same structure of sub-articles

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 175 of 298

EAIWS 4.16

itemCondAmountPerUnit

headerCondAmountPerUnit

The usual algorithm to combine item calculation conditions into group conditions is to sum up the
item calculation condition values to get the group calculation condition value and display amount and
quantity relation of the group calculation condition if and only if all combined item calculation condi-
tions have the same value.

If one or both of these options are used, this algorithm is replaced for the corresponding condition
type by another one that behaves as follows:

▪ Calculation rule, amount and quantity relation are invalid if the group calculation does not
have a finite non-zero quantity.

▪ Otherwise, the amount is computed as the condition value divided by the quantity. If the
amount is finite and not null then the calculation rule is set to Quantity, the amount to the
properly rounded computed amount, and the quantity relation to the sales unit size of the
group calculation. Otherwise invalid values are used.

Furthermore, if at least one of these options is true, all operations that work on calculations enforce
the use of a group calculation, even if only a single (set-)article item is selected.

The default value of these options is false.

 ExcludeInactiveItems and includeInactiveItems

Both options are mutually exclusive. The operation fails with a BasketServiceFault if both are set to
true. Other than that the values are ignored if no group calculation sheet is returned.

If both options are unspecified, the default values of excludeInactiveItems and includeInactiveItems
are true and false, respectively. Otherwise the default value of both options is false.

If excludeInactiveItems and includeInactiveItems are both false, group calculations ignore item
calculations of inactive items (i.e. alternative positions) if and only if the group contains at least one
active item.

If excludeInactiveItems is true, group calculations always ignore calculations of inactive items. This is
the default behavior if neither option is specified, and results in more or less the traditional behavior.
The only difference is that calculations of inactive items no longer affect the set of condition lines
added to the group calculation, so the group calculation returned for a group consisting entirely of
inactive items looks more or less the same as a group calculation returned for an empty group, an
empty folder, or a document calculation returned for an empty document (it contains no condition
lines except header conditions that are present in the document calculation).

If includeInactiveItems is true, group calculations do not ignore calculations of inactive items, i.e.
group condition values are computed as the sum of item conditions values of both active and
inactive items.

5.6.1.114 ArticleDescriptionMode

Synopsis:

enum ArticleDisplayMode {
 Short,
 Long,
 Both
}

The article description mode is used to indicate which article text (short, long or both) should be displayed in
the order listing.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 176 of 298

EAIWS 4.16

5.6.1.115 Axis

Synopsis:

enum Axis {
X,
Y,
Z

}

5.6.1.116 ARSRenderingSetup

Synopsis:

struct ARSRenderingSetup (
ARSCamera camera,
ARSLighting lighting

)

5.6.1.117 BasketViewConfig

Synopsis:

struct BasketViewConfig (
 string name,
string[] visibleColumns,
ColumnWidth[] columnWidths,
BasketViewSortConfig sortConfig,
DescrType[] articleDescrMode
string viewId,
boolean removable,
boolean editable,
ViewDisplayMode displayMode,
boolean expandGroups,
boolean expandPlanningFolders,
boolean expandBasketFolders,
boolean expandPartialPlannings,
boolean expandAggregates,
boolean? textItemsVisible,
boolean nonOfferArticlesVisible,
boolean? nonOrderArticlesVisible,
MergeMode mergeMode,
boolean autoColumnWidth,
boolean hiddenDiscounts,
SetArticleMode setArticleMode

)

struct ColumnWidth {
 ColumnId columnId;
 int width;
}

The parameter viewIds must be a possibly empty list of valid view IDs. If empty, the set of all current basket
views is used instead. Return value is a list of instances of type BasketViewConfig, one for each specified
view ID.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 177 of 298

EAIWS 4.16

All fields of type BasketViewConfig except viewId are optional because the type is also used by opera-
tion changeBasketViewConfig to change a subset of basket view configuration options.

The following fields are defined:

viewId

The view ID. This field is most useful if parameter viewIds is empty, but in general clients should
not assume that view configurations are returned in the same order as specified by parameter
viewIds.

removable

A Boolean value that indicates whether or not the view can be removed. The current implementation
allows all views except the standard view to be removed.

editable

A Boolean value that indicates whether or not the configuration of this view can be changed. The cur-
rent implementation allows the configuration of all views except the standard view to be changed.

displayMode

The display mode used by this view.

expandGroups

A Boolean value that controls expansion of planning groups. This option exists for compatibility with
P-BK and has, at least for now, no meaning for EAIWS.

expandPlanningFolders

A Boolean value that controls expansion of planning folders. This option exists for compatibility with
P-BK and has, at least for now, no meaning for EAIWS.

expandBasketFolders

A Boolean value that controls expansion of basket folders in display mode Sorted. If a view ex-
pands basket folders then all basket folder are replaced by their content (the basket folders them-
selves become invisible).

Basket folders are expanded if and only if the display mode is Sorted and the value of this option is
true.

expandPartialPlannings

A Boolean value that controls expansion or partial plannings (basket main article items with item type
PartialPlanning). Expanded partial plannings are replaced by their content. The partial plan-
nings themselves become invisible.

Basket main article items with item type PartialPlanning are expanded if and only if the display
mode is Sorted, the merge mode is not Compact, and the value of this option is true.

Basket sub-article items with item type PartialPlanning are expanded if and only if the display
mode is Sorted and the merge mode is not Compact.

expandAggregates

A Boolean value that controls expansion of aggregates (basket main article items with item type
Aggregate). Children of expanded aggregates become children of the aggregates parent57. The ag-
gregate itself remains visible.

Basket main article items with item type Aggregate are expanded if and only if the display mode is
Sorted, the merge mode is not Compact, and the value of this option is true.

Basket sub-article items with item type Aggregate are expanded if and only if the display mode is
Sorted and the merge mode is not Compact.

nonOrderArticlesVisible

The field is used to query and set the corresponding flag of basket views. Its default value when

57 i.e. they become siblings of the aggregate

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 178 of 298

EAIWS 4.16

used as template argument of operation addBasketView is true.

mergeMode

The merge mode to be used in case of display mode Sorted. The merge mode reported for views
with display mode Planning is always None, even if another merge mode has been explicitly con-
figured with operation changeBasketViewConfig.

textItemsVisible

This attribute is used by views with display mode Sorted to control whether or not text items are vis-
ible. It can be set for views with display mode Planning, even though its value is ignored by these
views.

Switching display modes does not affect the value of this flag.

The default value of this flag is false.

autoColumnWidth

A Boolean option that exists for compatibility with P-BK and controls whether or not P-BK automatic-
ally adjust the width of columns to match their content or uses fixed column widths.

hiddenDiscounts

A Boolean option that exists for compatibility with P-BK and controls whether or not discounts (and
extra charges) should be hidden in this view58.

setArticleMode

The set-article mode controls whether or not parts of set-articles should be visible within the view.
See description of type SetArticleMode for details.

name

The name of the view.

visibleColumns

A list of IDs of columns that should be visible in this view.

columnWidths

A possibly empty list of explicitly configured column widths. See option autoColumnWidth for more
information.

Note that the values returned for the various expand modes may be true even if the corresponding
item types are not expanded due to the selected display and merge modes.

5.6.1.118 DescrType

Synopsis:

enum DescrType {
Default,
Short,
Long,
Features,
Extra,
PreferUserDescr

}

58 If so, single and total sales prices, if displayed, will have to be faked.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 179 of 298

EAIWS 4.16

Default - the default article text according to OFML (either the short text, the long text, or both). The
default text is inserted in the returned description in place of either the short text row or the long text
row, whichever comes first. If 'Default' is specified, 'Short' and 'Long' are ignored.

Short - the article short text

Long - the article long text

Features - the feature/variant text

Extra - application-specific text

5.6.1.119 Dimension

enum Dimension {
X,
Y,
Z,
PX,
PY,
PZ,
NX,
NY,
NZ

}

5.6.1.120 GetArticleDataOptions

Synopsis:

struct GetArticleDataOptions (
boolean noProperties,
boolean fetchCatalogImage,
boolean fetchCatalogIcon,
string viewId
boolean separateCurrencies,
boolean? highResPropValueIcons,
boolean? FetchPropValueImages,

 boolean? enableBooleanPropType
)

highResPropValueIcons

Controls whether fields smallIcon and largeIcon of type PropertyValue return URLs for the traditional low
resolution material icons (if false) or may return URLs for high resolution material icons (if true).

If set to false (the default value), the behavior of EAIWS with regards do fields smallIcon and largeIcon does
not change.

If set to true, and directories .../mat/ and .../mat/m exist, smallIcon, if non-empty, references a file in .../mat/s,
and largeIcon, if non-empty, references a file in .../mat/m.

If set to true and at least one of .../mat/s and .../mat/m does not exist, both smallIcon and largeIcon, if non-
empty, reference a file in .../mat.

fetchPropValueImages

Controls whether the new field image of type PropertyValue is absent (if false, the default value) or may
reference a material image in directory .../mat/l (if true).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 180 of 298

EAIWS 4.16

Field image is absent if option fetchPropValueImages is set to true but no corresponding image file is
found. This differs from fields smallIcon and largeIcon, which are always present, but contain an empty string
if the corresponding icon is not found.

The optional boolean field enableBooleanPropType enables boolean properties. Its default value is
false, resulting in no change of behavior. Previously, boolean properties have been treated as properties of
type Numeric with values one and zero for true and false when returned by operations
getArticleData, getChoiceList and getAllChoiceLists, or zero and non-zero for false and
true when set with operation setPropertyValue.

If enableBooleanPropType is set to true, the behavior for boolean properties changes as follows:

• Operation getArticleData returns Boolean instead of Number in field type of type Property.
• Operation getArticleData returns true and false instead of 1. and 0. in field value of type

PropertyValue.

If option enableBooleanPropType is effectively false, operation getArticleData returns the value of
boolean properties as 1 and 0 instead of 1. and 0. in field value of type PropertyValue.

5.6.1.121 InactiveFlag

Synopsis:

enum InactiveFlag {
NoData,
SubsequentPrice

}

5.6.1.122 InactivePositionState

struct InactivePositionState (
string ppName,
boolean? optional

)

Field ppName specifies the name of the pricing procedure that treats the position as an inactive position, and
field optional indicates whether the user interface should treat the position as an optional (true) or
alternative (false) position. The default value of optional is false.

An empty string as ppName acts as a kind of wildcard, matching all pricing procedures, including those later
added to the basket.

5.6.1.123 MergeResult

Synopsis:

struct MergeResult(
string[] addedItems,
string[] removedItems,
string[] movedItems,
string[] updatedItems

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 181 of 298

EAIWS 4.16

5.6.1.124 OAPActionContext

Synopsis:

struct OAPActionContext (
string self,
string interactor,
float dpr

)

5.6.1.125 OAPActionListItem

Synopsis:

struct OAPActionListItem (
OAPAction action,
string[] actionIds,
string text
string imageFile

)

5.6.1.126 OAPActionResult

Synopsis:

struct OAPActionResult (
OAPAction actionData,
string[] objects,
string referenceObject,
Vector3 newObjectPosition,
Rotation newObjectRotation,
string[] addedItems,
string[] removedItems,
string[] movedItems,
string[] updatedItems
string id,
OAPActionState state

)

5.6.1.127 OAPActionState

Synopsis:

enum OAPActionState {
Disabled,
Enabled,
Success,
Failure,
NotResponsible

}

5.6.1.128 OAPArticleData

Synopsis:

struct OAPArticleData (
OAPGeneralInfo generalInfo,
string[] propertyChangeActions,
OAPAttachArea[] activeAttachAreas,
OAPAttachArea[] passiveAttachAreas,
string[] interactorIds

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 182 of 298

EAIWS 4.16

5.6.1.129 OAPGeneralInfo

Synopsis:

struct OAPGeneralInfo {
 boolean needsOFML;
 Vector3 boundsMin;
 Vector3 boundsMax;
 string? preview;
}

5.6.1.130 OAPAttachArea

Synopsis:

struct OAPAttachArea {
 string id;
 OAPGeometry geometry;
 Vector3? cursorPosition;
 string[] linkedAreas;
}

5.6.1.131 OAPGeometry

Synopsis:

struct OAPGeometry {}

5.6.1.132 OAPPointGeometry

Synopsis:

struct OAPPointGeometry : OAPGeometry {
 Vector3 position;
}

5.6.1.133 OAPPointListGeometry

Synopsis:

struct OAPPointListGeometry : OAPGeometry {
 Vector3[] points;
}

5.6.1.134 OAPPolyLineGeometry

Synopsis:

struct OAPPolyLineGeometry : OAPGeometry {
 Vector3[] definitionPoints;
 OAPRasterType rasterType;
 double? rasterValue;
 Vector3[] rasterPoints;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 183 of 298

EAIWS 4.16

5.6.1.135 OAPRectangleGeometry

Synopsis:

struct OAPRectangleGeometry : OAPGeometry {
 Vector3[] vertices;
 RasterType rasterType;
 Vector2? rasterValue;
 Vector3[] rasterPoints;
}

5.6.1.136 RasterType

Synopsis:

enum RasterType { None, Fixed, List }

5.6.1.137 OAPDataDefinedPlacement

Synopsis:

struct OAPDataDefinedPlacement {
 OAPObjectDefinition? referenceObject;
 string? attachPoint;
}

5.6.1.138 OAPDeleteObjectAction

Synopsis:

struct OAPDeleteObjectAction : OAPAction {
}

5.6.1.139 OAPMethodCallAction

Synopsis:

struct OAPMethodCallAction : OAPAction {
 MethodCallType type;
 string context;
 string method;
 string arguments;
}

5.6.1.140 OAPMethodCallType

Synopsis:

enum OAPMethodCallType {
Instance,
Class

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 184 of 298

EAIWS 4.16

5.6.1.141 OAPObjectCategory

Synopsis:

enum OAPObjectCategory {
Self,
ParentArticle,
TopArticle,
SubArticles,
SubArticlesDeep,
SubArticle,
Article,
Attached,
AttachedRecursive,
AttachedArea,
AttachedAreaRecursive,
AttachedArticle,
MethodCall

}

5.6.1.142 OAPObjectDefinition

Synopsis:

struct OAPObjectDefinition {
 OAPObjectCategory category;
 string[] arguments;
}

5.6.1.143 OAPPlacement

Synopsis:

struct OAPPlacement {}

5.6.1.144 OAPCreateObjectAction

Synopsis:

struct OAPCreateObjectAction : OAPAction {
 OAPObjectDefinition? parent;
 OAPArticleSpecMode articleSpecMode;
 string? packageId;
 string? baseArticleNumber;
 string? ofmlVariantCode;
 OAPPlacement initialPlacement;
}

5.6.1.145 OAPDataDefinedPlacement

Synopsis:

struct OAPDataDefinedPlacement : OAPPlacement (
OAPObjectDefinition referenceObject
string attachPoint

)

5.6.1.146 OAPDeleteObjectAction

Synopsis:

struct OAPDeleteObjectAction : OAPAction ()

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 185 of 298

EAIWS 4.16

5.6.1.147 OAPDimChange

Synopsis:

struct OAPDimChange (
decimal[]? PropChoiceList,

 string[] symbolicPropValues,
Axis? axis,
Dimension dimension,
string propClass,
string propName,
decimal propValue,
decimal minPropValue,
decimal maxPropValue,
boolean fixedValue,
int propDecDigits,
decimal multiplier,
decimal precision,
boolean changeSeparately,
boolean thirdDimension

)

axis

 Field `axis` is optional. It is present if and only if the new field `dimension` has a bi-directional value
(`X`, `Y` or `Z`).

dimension

specifies the axis and direction of an allowed dimension change.

propClass

Optional attribute, type string class of the property to use; This attribute is optional because a)
determining the class of the property would cause some additional overhead and b) in case of OFML
articles the property class is ignored by operation 'setPropertyValue' anyway.

So, if no property class is returned, the client should pass an empty string as property class to
'setPropertyValue'. If a property class is returned the client is expected to pass this roperty class to
'setPropertyValue'.

PropName

Required attribute, type string name of the property to use

propValue

Required attribute, type decimal current property value

minPropValue

Required attribute, type decimal minimum allowed property value

maxPropValue

Required attribute, type decimal maximum allowed property value

propChoiceList

Optional sequence of elements of type decimal optional choice list

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 186 of 298

EAIWS 4.16

fixedValue

Required attribute, type boolean, if true, only choice list values are allowed as property values; if
false, choice list values (if present) are just suggestions

 propDecDigits

Required attribute, type int, allowed number of decimal digits in property values right of decimal point

multiplier

Required attribute, type decimal, conversion factor used to convert between meters and the unit used
by property values (given in meters per prop value unit)

precision

Required attribute, type decima, precision of dimension change given as an absolute value in meters
(for instance, 0.1 means that dimension should be changed in multiples of 10 centimeters)

changeSeparetely

corresponds to column `Separate` of OAP table `DimChange`. For OAP 1.1 data, the value of this field
is false.

symbolicPropValues

The sequence of symbolic property values is either empty or contains the same number of elements
as the sequence of numeric choice values (propChoiceList). If non-empty, the client must set the
property specified by fields propClass and propName to the symbolic value at index N to effect a dim-
change to the choice value at index N.

thirdDimension

corresponds to column `ThirdDim` of OAP table `DimChange`. For OAP 1.1 data, the value of this field
is false.

5.6.1.148 OAPDimChangeAction

Synopsis:

struct OAPDimChangeAction : OAPAction (
OAPDimChange[] dimChanges

)

5.6.1.149 OAPDimChange2Action

Synopsis:

OAPDimChange2Action extends OAPAction (
OAPDimChange[] dimChanges

)

5.6.1.150 OAPPropEdit2Action

Synopsis:

OAPPropEdit2Action extends OAPAction (
string title,
OAPPropEditProp[] properties,
OAPPropEditClass[] propertyClasses

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 187 of 298

EAIWS 4.16

)

5.6.1.151 OAPPropEditAction

Synopsis:

struct OAPPropEditAction : OAPAction {
 string title;
 string[] properties;
 string[] propertyClasses;
 boolean visibleOnly;
 boolean editableOnly;
}

5.6.1.152 OAPPropEditClass

Synopsis:

OAPPropEditClass (
string propClass,
boolean visibleOnly,
boolean editableOnly

)

Field `propClass` of `OAPPropEditProp` is optional. If missing (currently always the case) or empty, clients
should either ignore the property class (e.g. if comparing property class and name with instances of
`Property` as returned by operation `getArticleData`) or specify an empty property class in situations where a
property class must be specified (as required by operation `setPropertyValue`).

Fields `visibleOnly` and `editableOnly` are used to restrict the visibility of individual properties in OAP
property editors. If `visible` and `editable` are the property-specific flags reported as fields of complex type
`Property`, then the corresponding property must be visible if and only if the expression

(visible || !visibleOnly) && (editable || !editableOnly) is true. Or, perhaps more intuitive, they must be hidden if

(visibleOnly && !visible) || (editableOnly && !editable) is false.

5.6.1.153 OAPPropEditProp

Synopsis:

OAPPropEditProp (
string propClass,
string propName,
boolean visibleOnly,
boolean editableOnly

)

Fields `visibleOnly` and `editableOnly` are used to restrict the visibility of individual properties in OAP
property editors. If `visible` and `editable` are the property-specific flags reported as fields of complex type
`Property`, then the corresponding property must be visible if and only if the expression

(visible || !visibleOnly) && (editable || !editableOnly) is true. Or, perhaps more intuitive, they must be hidden if

(visibleOnly && !visible) || (editableOnly && !editable) is false.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 188 of 298

EAIWS 4.16

5.6.1.154 OAPRasterType

Synopsis:

enum OAPRasterType {
None,
Fixed,
List

}

5.6.1.155 OAPRasterType

Synopsis:

enum OAPRasterType {
None,
Fixed,
List

}

5.6.1.156 OAPSelectObjectAction

Synopsis:

struct OAPSelectObjectAction : OAPAction ()

5.6.1.157 OAPShowMediaAction

Synopsis:

OAPShowMediaAction extends OAPAction (
OAPMediaSource mediaSource,
string mediaId

)

The fields `mediaSource` and `mediaId` correspond to columns `Type` and `Media` of OAP table `ExtMedia`.

5.6.1.158 OAPSymbolSize

Synopsis:

enum OAPSymbolSize {
Small,
Medium,
Large

}

5.6.1.159 PriceInfoElement

Synopsis:

struct PriceInfoElement (
Value value
string selector

)

5.6.1.160 SeriesInfo

Synopsis:

struct SeriesInfo (
DisplayText[] seriesName,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 189 of 298

EAIWS 4.16

string seriesId
)

5.6.1.161 SetArticleProperties

Synopsis:

struct SetArticleProperties (
string[] partIds,
string[] allPartIds
boolean collapsed

)

5.6.1.162 SetLanguagesMode

Synopsis:

enum SetLanguagesMode {
Default,
CurrentProject,
AllProjects
}

5.6.1.163 SetPropertyValueOptions

struct SetPropertyValueOptions (
boolean computeVisibilityChangeFlags,
boolean computeValueChangeFlags,
boolean computeChoiceListChangeFlags,
boolean? EnableBooleanPropType,

)

The fields control whether certain flags in the return value of operation setPropertyValue are computed.
Not computing them may have a positive impact on performance.

The flags controlled by these fields, and their potential performance impact, are as follows:

computeVisibilityChangeFlags

The default value is true. If false, flags S and H are not computed. Setting this flag to false won't
improve performance unless all flags are set to false, and even then the time saved in operation
setPropertyValue will probably later be spent in operation getArticleData (which would otherwise
reuse the information cached during setPropertyValue).

ComputeValueChangeFlags

The default value is true. If false, flags V, v, U, and A are not computed. As of now, the effects on
performance should be the same as described for computeVisibilityChangeFlags.

computeChoiceListChangeFlags

The default value is true. If false, flags C and I are not computed. Setting this flag to false will always
speed up operation setPropertyValue, and should not have a negative effect on operation
setArticleData. However, client's that use operation getAllChoiceLists after each invocation of
setPropertyValue should not see a difference in overall performance.

enableBooleanPropType

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 190 of 298

EAIWS 4.16

The optional boolean field enableBooleanPropType enables boolean properties. Its default value is
false, resulting in no change of behavior. Previously, boolean properties have been treated as properties of
type Numeric with values one and zero for true and false when returned by operations
getArticleData, getChoiceList and getAllChoiceLists, or zero and non-zero for false and
true when set with operation setPropertyValue.

If enableBooleanPropType is set to true, the behavior for boolean properties changes as follows:

• Operation setPropertyValue expects argument value to be true or false instead of a numeric
value (usually but not necessarily 1 or 0). For consistency with the handling of numbers, leading and
trailing whitespace are ignored.

If option enableBooleanPropType is effectively false, operation getChoiceList returns the value of
boolean properties as 1 and 0 instead of 1. and 0. in field value of type PropertyValue.

5.6.1.164 TMColumnDef

Synopsis:

struct TMColumnDef (
string displayName
TMColumnId columnId

)

5.6.1.165 TMColumnId

Synopsis:

enum TMColumnId {
Undefined,
Identifier,
Name,
Language,
Text,
Visible

}

5.6.1.166 TMRow

Synopsis:

struct TMRow (
TMText[] texts
string textId,
boolean readOnly,
boolean visible

)

5.6.1.167 TMRowDef

Synopsis:

struct TMRowDef(
string displayName
TMTextType type,
string textId,
boolean readOnly,
boolean defaultVisible

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 191 of 298

EAIWS 4.16

5.6.1.168 TMTable

Synopsis:

struct TMTable (
TMColumnDef[] columns,
TMRowDef[] rows

)

5.6.1.169 TMText

Synopsis:

struct TMText (
string text
string language

)

5.6.1.170 TMTextType

Synopsis:

enum TMTextType {
Undefined,
Short,
Long,
Features,
Extra

}

5.6.1.171 BasketViewSortConfig

Synopsis:

struct BasketViewSortConfig (
SortGroup[] groups
CollatorStrength collatorStrength,
CollatorDecomposition collatorDecomposition)

5.6.1.172 ColumnSortOrder

Synopsis:

struct ColumnSortOrder (
string columnId,
boolean ascending,
boolean undefinedFirst)

5.6.1.173 SortGroup

Synopsis:

struct SortGroup (
SortGroupSelector[] selector,
ColumnSortOrder[] sortOrder
int position)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 192 of 298

EAIWS 4.16

5.6.1.174 SortGroupSelector

Synopsis:

struct SortGroupSelector (
BasketItemType itemType,
string itemId)

5.6.1.175 CollatorDecomposition

Synopsis:

enum CollatorDecomposition {
None,
Canonical,
Full
 }

5.6.1.176 CollatorStrength

Synopsis:

enum CollatorStrength {
Primary,
Secondary,
Tertiary,
Identical}

5.6.2 Faults

5.6.2.1 BasketServiceFault

Synopsis:

struct BasketServiceFault {
string* message;
PartCompositionFailure[] partCompositionFailures;

}
A BasketServiceFault is returned by operations of the basket service in case of errors the Online Config-
urator was prepared to detect and deal with (i.e. to recover cleanly).

See description of complex type PartCompositionFailure and operations getGeneratedImage and
getExportedGeometry for more information.

5.6.3 Operations

5.6.3.1 adjustCalculationLineAmount

Synopsis:

void adjustCalculationLineAmount(

string sessionId,

string[] itemIds,

string ppName,

int level,

int counter,

decimal amount,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 193 of 298

EAIWS 4.16

string currency,

CondGroupSelectionOptions options

)

The primary purpose of these operations is to adjust margin values and amounts, but they can also be used
to set condition amounts and adjust condition values.

Parameters 'sessionId', 'itemIds', 'ppName' and 'options' are interpreted the same way as by
'setConditionAmount()'.

Parameters 'level' and 'counter' must specify a line of the item, aggregate (group/set-article) or document
calculation specified by parameters 'itemIds' and 'ppName'. (Other than 'setConditionAmount()', these
operations do not allow use of -1 as counter in cases where the specification of the level alone would be
sufficient to uniquely identify a calculation line.)

Both 'value' and 'currency' must be specified. The currency must be either an ISO 4217 currency code, '%',
or an empty string. An empty string is usually replaced by the document currency, unless the operation is
adjustCalculationLineAmount() and the subtotals/conditions calculation rule is 'Percent' (in which case it is
replaced by '%') or 'Invalid' (in which case the operation terminates abnormally).

The current implementation does not allow the use of currencies other than the document currency (or the
empty string) unless 'adjustCalculationLineAmount()' is used for a condition line.

5.6.3.2 adjustCalculationLineValue

Synopsis:

void adjustCalculationLineAmount(

string sessionId,

string[] itemIds,

string ppName,

int level,

int counter,

decimal value,

string currency,

CondGroupSelectionOptions options

)

The primary purpose of these operations is to adjust margin values and amounts, but they can also be used
to set condition amounts and adjust condition values.

Parameters 'sessionId', 'itemIds', 'ppName' and 'options' are interpreted the same way as by
'setConditionAmount()'.

Parameters 'level' and 'counter' must specify a line of the item, aggregate (group/set-article) or document
calculation specified by parameters 'itemIds' and 'ppName'. (Other than 'setConditionAmount()', these
operations do not allow use of -1 as counter in cases where the specification of the level alone would be
sufficient to uniquely identify a calculation line.)

Both 'value' and 'currency' must be specified. The currency must be either an ISO 4217 currency code, '%',
or an empty string. An empty string is usually replaced by the document currency, unless the operation is
adjustCalculationLineAmount() and the subtotals/conditions calculation rule is 'Percent' (in which case it is
replaced by '%') or 'Invalid' (in which case the operation terminates abnormally).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 194 of 298

EAIWS 4.16

The current implementation does not allow the use of currencies other than the document currency (or the
empty string) unless 'adjustCalculationLineAmount()' is used for a condition line.

5.6.3.3 AdjustConditionValue

Synopsis:

void adjustConditionValue(

 string sessionId,

string[] itemIds,

string ppName,

string condType,

int counter,

decimal value,

string currency,

CondGroupSelectionOptions options

)

The operation behaves more or less like setConditionAmount, but instead of just setting the amount to the
given value, it tries to compute an amount that results in a value as close as possible to the given value.

The currency argument must be either an empty string (in which case the document currency is assumed) or
equal to the document currency.

5.6.3.4 setLanguages

Synopsis:

void setLanguages(SessionId sessionId, string[] languages)
 throws BasketServiceFault;

This operation sets the language list of the basket service (the product data languages) to the specified, pos-
sibly empty list of ISO 639 alpha-2 language codes. It then augments59 this list with the language of the cur-
rent locale to build an effective list of product data languages. The effective list of product data languages is
updated after each invocation of the session service’s setLocale operation to reflect possible changes to
the locale language.

Natural language texts are returned in the first language from the list of effective product data languages
supported by the package containing the product database for the article in question. The set of supported
languages is defined by the value of the DSR key languages. In case the package does not support any of
the listed languages then the Online Configurator returns the text in the first supported language.

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
The languages will be changed for the whole session including all projects loaded in the session.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The languages parameter contains an invalid language code60.

5.6.3.5 getLanguages

Synopsis:

string[] getLanguages(SessionId sessionId) throws BasketServiceFault;

59 The locale language is appended to the list if it is not already part of the list.
60 A language code is accepted as long as it consists of two lower case ASCII letters. It must not necessarily be defined by ISO 639.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 195 of 298

EAIWS 4.16

This operation queries the current list of product data languages as set by the setLanguages operation. If
the setLanguages operation has not been invoked yet then the list of product data languages is empty.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.6.3.6 setConditionDescription

Synopsis:

void setConditionDescription(
string sessionId,
string ppName,
string condType,
string lang,
string description

)

5.6.3.7 setCurrency

Synopsis:

void setCurrency(SessionId sessionId, string currency)
 throws BasketServiceFault;

The setCurrency operation changes the current session’s basket currency to the currency specified by the
currency parameter, which must be a known61 ISO 4217 currency code (consisting of three upper case let-
ters, pseudo-currency codes are not supported).

Prices returned by basket operations use the current basket currency if it is supported by the product data-
base. If the current basket currency is not supported by the product database the behavior is undefined62.

Note that, although the default basket currency depends on the session’s default locale, invocations of the
session service’s setLocale operation never change the current basket currency.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The currencies parameter contains an invalid currency code, or the specified currency is not sup-
ported by the Online Configurator.

• The currencies parameter contains a currency code with no available or valid conversion rate in
the currency conversion table of the current basket. If a new basket is created (as with the 'openSes-
sion' operation), this table is initialized with the currencies found in etc/currencies.cfg. If a basket is
loaded using the 'loadSession' operation, the table is loaded from the OBK file.

• If it is passed the code of a pseudo currency.

5.6.3.8 getCurrency

Synopsis:

string getCurrency(SessionId sessionId) throws BasketServiceFault;

This operation queries the current basket currency as set by the setCurrency operation, or the session’s

61 The current implementation accepts all currencies known by the Java virtual machine. Future versions of the Online Configurator
might further limit the set of accepted currencies.

62 The current implementation returns prices in currency more or less randomly chosen from the set of supported currencies. A future
versions of the Online Configurator will use a well defined algorithm to choose one of the supported currencies and convert the prices
fetched from the product database into the current basket currency.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 196 of 298

EAIWS 4.16

default currency if the setCurrency operation has not been invoked yet.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.6.3.9 getTopFolderId

Synopsis:

BItemId getTopFolderId(SessionId sessionId,
ViewId viewId)

 throws BasketServiceFault;

The getTopFolderId operation returns the basket item ID of the root node of the tree of basket items
maintained by the basket service for the session identified by the sessionId parameter.

If the argument viewId is present and neither an empty string nor the NIL-UUID then it must be the ID of a
current basket view, the itemId argument must be the ID of an item of this view, and the returned item IDs
will be IDs of items of this view.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

5.6.3.10 getFatherId

Synopsis:

BItemId getFatherId(SessionId sessionId,
 BItemId itemId,
 ViewId viewId)

 throws BasketServiceFault;

The getFatherId operation returns the basket item ID of the parent item of the basket item identified by
the itemId parameter.

The itemId parameter must identify a basket item that is part of the basket item tree maintained by the bas-
ket service for the session identified by the sessionId parameter.

If the itemId parameter references the root node of the basket item tree then the operation returns the null-
UUID (§5.2.1).

If the argument viewId is present and neither an empty string nor the NIL-UUID then it must be the ID of a
current basket view, the itemId argument must be the ID of an item of this view, and the returned item IDs
will be IDs of items of this view.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify a basket item.

5.6.3.11 getManufacturerInfo

Synopsis:

ManufacturerInfo[] getManufacturerInfo(
string sessionId,
string[] itemIds,
string[] manuIds,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 197 of 298

EAIWS 4.16

string[] seriesIds,
GetManufacturerInfoOptions options,
boolean? externalCatalog
)

externalCatalog

This option controls whether returned instances of ManufacturerInfo contain information about
external catalogs in fields externalCatalogURL and externalCatalogName. The default value
of this option is equal to the effective value of option allData.

Furthermore, the default value of option manufacturerConfig is now determined as follows: If the
effective value of allData is true, the default value of manufacturerConfig is true too. Otherwise, the
default value of manufacturerConfig is true if and only if at least one of the effective values of options
address, copyright, distributorName, or externalCatalog is true.

5.6.3.12 getSubItemIds

Synopsis:

BItemId[] getSubItemIds(SessionId sessionId,
 BItemId itemId,
 ViewId viewId)

 throws BasketServiceFault;

The getSubItemIds operation returns a sequence of basket item IDs for the child items of the basket item
identified by the itemId parameter.

The itemId parameter must identify a basket item that is part of the basket item tree maintained by the bas-
ket service for the session identified by the sessionId parameter.

The itemId parameter may identify basket items of any type. If the item does not have child items, the oper-
ation returns an empty sequence.

If the argument viewId is present and neither an empty string nor the NIL-UUID then it must be the ID of a
current basket view, the itemId argument must be the ID of an item of this view, and the returned item IDs
will be IDs of items of this view.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify a basket item.

5.6.3.13 getAllItems

Synopsis:

BasketItem[] getAllItems(SessionId sessionId,
 BItemId itemIds,
 GetAllItemsOptions options)

 throws BasketServiceFault;

The getAllItems operation returns basic information about all items of the basket item tree maintained by
the basket service for the session identified by the sessionId parameter and the items specified in the
itemIds parameter. Return value is a list of BasketItem structures in the same order as produced by a
pre-order traversal of the basket item hierarchy, starting with the (invisible) top folder. See section 5.6.1.8 for
more information.

The final order of selected items is determined by a pre-order traversal of the basket item hierarchy.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 198 of 298

EAIWS 4.16

The option viewId of ItemSelectionOptions is supported by this operation. If it contains the ID of a
view then the behavior of the operation is changed as follows:

• Item IDs passed with parameter itemIds are interpreted as IDs of items within this view.

• The options parentItems and subItems, if set, affect the selection of additional view items.

Instances of BasketItem returned for view items do not contain fields mainArticleId, subArticleIds,
setArticleId, setArticlePartIds and geometryId. Instances of BasketItem returned for refer-
enced basket items (field basketItems) contain or may contain (depending on options setArticleIds
and geometryIds) these fields.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• If the options parameter is present and duplicate item Ids occur.

5.6.3.14 InsertArticleOptions

Synopsis:

struct InsertArticleOptions (
boolean noComplexType,
AttachmentMode attachmentMode,
PlanningDirection planarPlanningDirection,
SpatialPlanningDirection spatialPlanningDirection,
boolean strictVarCode,
boolean migrate,
string attachPoint

)

The optional options parameter references an instance of the InsertArticleOptions structure with the following
optional fields:

noComplexType

Basically, a single article can be inserted as an ordinary OFML article (item type Article) or as a complex
article1 (item types Aggregate and PartialPlanning). The OFML data for a particular article may support
insertion as an ordinary article or insertion as a complex article, or both. If both possibilities are supported,
the noComplexType option, if set to true, causes the article to be inserted as an ordinary article. The default
value is false (i.e., articles are inserted as complex articles whenever possible).

5.6.3.15 InsertOCDArticle (deprecated)

Synopsis:

BItemId insertOCDArticle(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 InsertInfo insertInfo)
 throws BasketServiceFault;

With EAIWS 4.14 this operation is removed in the SOAP service! Please use insertOFMLArticle in-
stead.

The insertOCDArticle operation inserts a new OCD article item into the basket item tree maintained by
the basket service for the session identified by the sessionId parameter.

The fatherId parameter, if not the null-UUID, must identify the basket item that will become the parent of
the new OCD article item. If fatherId is the null-UUID (§5.2.1), the root item of the basket item tree will be
used as the parent item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 199 of 298

EAIWS 4.16

The beforeId parameter, if not the null-UUID, must identify an existing basket item. If this item is a des-
cendant of the basket item that has been selected as the parent of the newly inserted item, then the new
item will be inserted in front of the parent’s child which is either equal to the item identified by beforeId, or
an ancestor of this item. Otherwise (if beforeId is a null-UUID, or if the basket item identified by beforeId
is not a descendant of the parent item) the new item will be inserted as the last child of the parent item.

The insertInfo parameter specifies the OCD article to be inserted. For more information see §5.6.1.46.

If the operation was able to find the requested article in the product data it determines the initial configuration
of the article, evaluating the variant code if specified, and, if successful so far, inserts the article into the bas-
ket item tree.

The inserted basket item is of type OCDArticle (§5.6.1.7).

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• Either the fatherId or beforeId parameter does not represent an UUID.
• Either the fatherId or beforeId parameter does not identify a basket item and is not the null-

UUID.
• The basket item identified by the fatherId parameter does not permit child items.
• If an article package ID has been specified and it is either not a valid OFML package ID or it does not

identify a package referenced by the configuration of the current session.
• If no article package ID has been specified and the Online Configurator was unable to find an OFML

package matching the specified manufacturer and series (if specified) IDs.
• No base article number has been specified.
• The product data does not contain an article with the same manufacturer ID (if specified), series ID

(if specified), and base article number.
• An invalid variant code has been specified, i.e. the variant code does not match the variant code

scheme of the article.
• There was some error evaluating the relation knowledge of the article.
• There was some error accessing the product data.

5.6.3.16 insertOFMLArticle

Synopsis:

BItemId insertOFMLArticle(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 InsertInfo insertInfo,
 InsertArticleOptions* options)
 throws BasketServiceFault;

The insertOFMLArticle operation inserts a new OFML article item into the basket item tree maintained
by the basket service for the session identified by the sessionId parameter.

The fatherId parameter, if not the null-UUID, must identify the basket item that will become the parent of
the new OFML article item. If fatherId is the null-UUID (§5.2.1), the root item of the basket item tree will be
used as the parent item.

The beforeId parameter, if not the null-UUID, must identify an existing basket item. If this item is a des-
cendant of the basket item that has been selected as the parent of the newly inserted item, then the new
item will be inserted in front of the parent’s child which is either equal to the item identified by beforeId, or
an ancestor of this item. Otherwise (if beforeId is a null-UUID, or if the basket item identified by beforeId
is not a descendant of the parent item) the new item will be inserted as the last child of the parent item.

The insertInfo parameter specifies the OCD article to be inserted. For more information see §5.6.1.46.

For attachment modes other than None, the item specified by the fatherId passed to the 'in-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 200 of 298

EAIWS 4.16

sertOFMLArticle' operation must be an basket article item that is part of a composite article.

(Note that a composite article may consist, in the most trivial case, of a single item. Also note that its
usually not possible to insert an arbitrary article into a particular composite article. Either the com-
posite article must be a special composite article that accepts any kind of article item (i.e. some kind
of partial planning), or the composite article and the article to be inserted must have been designed
to be used together.)

planar

enum PlanningDirection{
Right_Front,
Right_Back,
Left_Front,
Left_Back,
Front_Right,
Front_Left,
Back_Right,
Back_Left}

Default: Right_Front

spatialPlanningDirection=Horizontal|Vertical

Default: Horizontal

Specification of planning directions only affects insertion into a composite article. If the new article is
inserted as a stand-alone article, the planning directions are ignored.

strictVarCode=true|false

Default: false

The strictVarCode flag affects OFML article instantiation as follows:

◦ If false, OFML method setCreationMode(0) is called before the article is instantiated. Once
the article has been instantiated, its configuration is restored using OFML method
setXArticleSpec(). Finally, OFML method assignDefaultPropValues() is called to ap-
ply custom configuration profiles (not implemented right now).

◦ If true, OFML method setCreationMode(1) is called before the article is instantiated, and its
configuration is restored using OFML method setupConfiguration(). There is no call of
OFML method assignDefaultPropValues(), so the variant code of the inserted article
should conform to the specified variant code.

migrate=true|false

Default: false

If option strictVarCode is set to true then this option can be used to allow insertion of an article
even if the configuration specified by the variant code is not supported by the product data in use,
and thus cannot be restored exactly63.

The operation first searches registered catalogs for the requested article. If the supplied insert information
contains a catalog identifier, only this catalog is considered, and the catalog and article packages, if spe-
cified, must be part of the catalog. Otherwise, if either a catalog package and/or an article package has been
specified, the operation considers the set of catalogs that contain the specified package or packages. Other-
wise, the insert information must contain a commercial manufacturer identifier, and the operation considers
all catalogs containing articles for this manufacturer.

If, at this point, no catalogs could be determined, the operation fails. Otherwise, if there is more than one eli-

63 This condition manifests itself with a BasketServiceFault, with egr.eai.basket.ArticleMigrationRequiredException
as its cause.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 201 of 298

EAIWS 4.16

gible catalog, the catalogs are sorted according to their validity, release date, and the current date64. The sor-
ted list of catalogs is searched for the first catalog containing at least one catalog entry matching the given
series (if specified), article package (if specified) and base article number. Subsequent catalogs are not con-
sidered.

If multiple catalog entries are found, and a catalog package is specified, and at least one of the found catalog
entries originates from the specified catalog package, then the set of catalog entries is reduced to the set of
entries originating from the specified catalog package.

If, at this point, the remaining catalog entries reference OFML articles from different packages, the insert op-
eration fails65.

Finally, from the set of remaining catalog entries, the ‘best’ catalog entry is chosen to be inserted66.

The inserted basket item is of type Article, Aggregate, or PartialPlanning (§5.6.1.7).

Note that the insertion of an OFML article may result in more than one new basket article item67.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• Either the fatherId or beforeId parameter does not represent an UUID.
• Either the fatherId or beforeId parameter does not identify a basket item and is not the null-

UUID.
• The basket item identified by the fatherId parameter does not permit child items.
• If the catalog ID, if specified, does not adhere to the syntax of OFML catalog identifiers or does not

identify a catalog referenced by the current session configuration.
• If the catalog package ID or article package ID, if specified, does not adhere to the syntax of OFML

package identifiers, does not identify a package referenced by the current session configuration, or,
if a catalog has been specified, the referenced package is not part of the catalog.

• No base article number has been specified.
• If the Online Configurator was not able to find a catalog entry matching the given insert information.
• There was some error during the actual process of inserting the OFML article. There are too many

reasons for the insertion process to fail to describe here, but they usually originate from some
product data error.

5.6.3.17 insertUserArticle

Synopsis:

void insertUserArticle(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 string shortText)
 throws BasketServiceFault;

The insertUserArticle operation inserts a new user article item (also known as manual article) into the
basket item tree maintained by the basket service for the session identified by the sessionId parameter.

The fatherId parameter, if not the null-UUID, must identify the basket item that will become the parent of
the new OFML article item. If fatherId is the null-UUID (§5.2.1), the root item of the basket item tree will be
used as the parent item.

The beforeId parameter, if not the null-UUID, must identify an existing basket item. If this item is a des-
cendant of the basket item that has been selected as the parent of the newly inserted item, then the new

64 At present, the sort order is as follows: valid catalogs come first, followed by catalogs not yet valid, followed by catalogs no longer
valid. Within each group, more recently released catalogs come first.

65 This can not happen if an article package has been specified.
66 The selection of the ‘best’ catalog entry is based on the comparison of the catalog entry’s variant code and the specified variant code,

if any. The actual algorithm used for the comparison is implementation-defined.
67 The best example is the insertion of a meta type where the meta type and main child both require their own order position.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 202 of 298

EAIWS 4.16

item will be inserted in front of the parent’s child which is either equal to the item identified by beforeId, or
an ancestor of this item. Otherwise (if beforeId is a null-UUID, or if the basket item identified by beforeId
is not a descendant of the parent item) the new item will be inserted as the last child of the parent item.

The parameter shortText should contain the short description of the article.

The inserted basket item is of type UserArticle (§5.6.1.7). Additional properties of the newly inserted user
article item may be set using the setItemProperties operation (§5.6.3.33).

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• Either the fatherId or beforeId parameter does not represent an UUID.
• Either the fatherId or beforeId parameter does not identify a basket item and is not the null-

UUID.
• The basket item identified by the fatherId parameter does not permit child items.
• There was some error during the actual process of inserting the user article item.

5.6.3.18 insertFolder

Synopsis:

BItemId insertFolder(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 string name)
 throws BasketServiceFault;

The insertFolder operation inserts a new folder item into the basket item tree maintained by the basket
service for the session identified by the sessionId parameter. It returns the item ID of the inserted folder.

The fatherId parameter, if not the null-UUID, must identify the basket item that will become the parent of
the new OFML article item. If fatherId is the null-UUID (§5.2.1), the root item of the basket item tree will be
used as the parent item.

The beforeId parameter, if not the null-UUID, must identify an existing basket item. If this item is a des-
cendant of the basket item that has been selected as the parent of the newly inserted item, then the new
item will be inserted in front of the parent’s child which is either equal to the item identified by beforeId, or
an ancestor of this item. Otherwise (if beforeId is a null-UUID, or if the basket item identified by beforeId
is not a descendant of the parent item) the new item will be inserted as the last child of the parent item.

The parameter name should contain the name of the folder.

The inserted basket item is of type Folder (§5.6.1.7). Additional properties of the newly inserted folder item
may be set using the setItemProperties operation (§5.6.3.33).

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• Either the fatherId or beforeId parameter does not represent an UUID.
• Either the fatherId or beforeId parameter does not identify a basket item and is not the null-

UUID.
• The basket item identified by the fatherId parameter does not permit child items of type Folder.
• There was some error during the actual process of inserting the folder item.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 203 of 298

EAIWS 4.16

5.6.3.19 insertTextItem

Synopsis:

BItemId insertTextItem(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 string text)
 throws BasketServiceFault;

The operation insertTextItem, behaving more or less like insertFolder, except that the inserted item
is a text instead of a folder item, and the parent item does not need to be a folder item.

5.6.3.20 deleteItems

Synopsis:

void deleteItems(SessionId sessionId,
 BItemId[] itemIds,
 DeleteItemsOptions options)

 throws BasketServiceFault;

The deleteItems operation deletes the basket items identified by the elements of the itemIds sequence
parameter from the basket item tree maintained by the basket service for the session identified by the
sessionId parameter.

The options inherited from ItemSelectionOptions are handled in the usual manner. The option
subArticles defined for DeleteItemsOptions enables (if specified as true) the deletion of individual
sub-articles of composite articles.

All elements of the itemIds sequence parameter must identify existing basket items. If at least one item ID
does not identify an existing item then no items will be deleted.

Duplicate item IDs are considered only once.

The root of the basket item tree cannot be deleted. If specified, it will be silently ignored.

It is not an error if the itemIds parameter is an empty sequence.

If one of the identified basket items has independent child items68 which are not selected for deletion and
DeletionItemsOptions is specified as false, they will not be deleted. Instead, they will replace their de-
leted parent. The order of remaining basket items, as determined by tree-traversal after deletion, will be
identical to the relative order of the same items prior to deletion.

If an item to be deleted is the main article item of a compound article, all items that belong to the compound
article are deleted, and independent child items of all deleted items are handled as described above.

If an item to be deleted is a sub-article item of a compound article, the operation silently ignores this item.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• At least one of the elements of the itemIds sequence parameter is not a valid string representation
of an UUID.

• At least one of the elements of the itemIds sequence parameter does not identify an existing bas-
ket item.

68 The Online Configurator supports ‘compound articles’ that consist of more than one individual basket article item, one of them being
the ‘main article item’. If the main article item of such a compound article gets deleted, all other items belonging to the compound
article (whether or not they are children of the main item) will be deleted too.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 204 of 298

EAIWS 4.16

5.6.3.21 mergeBasketArticles

Synopsis:

MergeResult mergeBasketArticles{
string sessionId,
string[] itemIds,
ItemSelectionOptions options

}

Items to consider for merging are selected using the 'itemIds' and item selection 'options' parameters. View
items are mapped to basket items. Only basket main article items and user article items are considered for
merging. Two such items are merged if:

- they have the same parent
- they have identical sub-positions (children in basket item tree)
- they have identical fields and additional texts
- they are either not part of a set-article, or part of the same
 set-article
- they have the same calculations
- in case of basket main article items with sub-articles:
 - they represent identical composite articles
 - the above conditions hold for matching sub-articles, except that
 they do not have the same sub-positions

The return value of the operation is of complex type MergeResult and contains elements <addedItems>,
<removedItems>, <movedItems> and <updatedItems>, one element for each added, removed, moved and
updated item.

Obviously, whenever some merging took place there should be at least one removed and one updated item.

With the current implementation there should never be an added item.

Under certain circumstances there may be moved items. Consider two identical composite articles (A1,B1)
and (A2,B2) where A? is the main article and B? the sub-article. They shall all be children of the same parent
C. If A1 and A2 are merged and B2 has some child D then D becomes a child of C if A2 is merged into A1,
thus D is reported as a moved item. If, on the other hand, A1 is merged into A2 then D does not move.

5.6.3.22 SplitUpCompositeArticles

Synopsis:

BitemId[] splitUpCompositeArticles(SessionId sessionId,
 BitemId[] itemIds,
 ItemSelectionOptions? Options)
 throws BasketServiceFault;

The operation splitUpCompositeArticles splits up a composite article (usually a meta type) into
individual ordinary articles and folders (in case the composite article contained partial plannings).

The operation first determines a set of selected items based on the specified item IDs and optional item
selection options (as of now, option viewId is not supported).

For each main article item (root of a composite article) that is part of the set of selected items, the oper-
ation then performs the following, starting with the main article item:

1. If the original item is a partial planning, create a folder as predecessor of the original item. The
item's short text is used as the folder's label.

2. If the original item is an article, create an ordinary article item as predecessor of the original
item, and initialize it with the original article's OFML data, quantity, custom texts and field val-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 205 of 298

EAIWS 4.16

ues, changes to item calculations (added manual conditions, removed conditions, manually spe-
cified condition values), tax information, packaging information, and alternative position state.

3. If the original item is part of a set-article, make the new item a part of the same set-article.

4. Move all children (sub-positions, not sub-articles) of the original item to the new item, preserving
their order.

5. Recursively iterate over all sub-article items, repeating above steps until all sub-article items
have been converted.

6. Delete the original main article item.

If conversion fails for whatever reason (not expected to happen), items newly created for the current
partially converted composit article are deleted. This may result in structural changes (items that had
been sub-positions of the main article item may become siblings of the main article item).

The operation returns a sequence of basket item IDs with the same number of elements as passed to
the itemsId parameter. If the N-th parameter is the ID of an item that was part of a composite article
that has been split up, then the N-th return value is the ID of the ordinary article item or folder that rep-
resents the original article now. Otherwise, the N-th return value is equal to the N-th parameter if the
item still exists, or the NIL-ID if the item has been deleted for whatever reason (should not happen).

5.6.3.23 moveItems

Synopsis:

MoveItemsResult[] moveItems(SessionId sessionId,
 MoveItemsDirection direction,
 BItemId[] itemIds)
 throws BasketServiceFault;

The moveItems operation moves the basket items identified by the elements of the itemIds sequence
parameter in the basket item tree maintained by the basket service for the session identified by the
sessionId parameter. The direction argument specifies whether the specified items are to be moved up
or down within their current folder, or are to be indented or unindented.

In all cases, the itemIds parameter must specify a possibly empty set of existing items all having the same
parent item. The top folder must not be part of this set. If one of these conditions is violated, the operations
fails with a BasketServiceFault.

A BasketServiceFault is returned if any of the following conditions occurs:

• The the itemIds parameter specifies a set of existing items that don't have the same parent item.
• The top folder is part of the itemIds parameter.

5.6.3.24 relocateItems

Synopsis:

RelocateItemsResult[] relocateItems(SessionId sessionId,
BItemId fatherId,
BItemId beforeId,
BItemId[] itemIds,
RelocateItemsOptions *options)

 throws BasketServiceFault;

Move specified list of items to new position in basket item tree.

The new position of the moved items is specified by fatherId and beforeId. They become children of
the item identified by the father ID, and are inserted into the list of the father's children immediately before
the item identified by beforeId, unless beforeId is either the NIL ID, or identifies an item that is not a child

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 206 of 298

EAIWS 4.16

of the father, in which case they are appended to the list of children.

The items to move, and their order once they have been moved, is specified by itemIds. As the order is
significant, duplicate item IDs are not allowed.

In general, the specified items are moved together with all their descendants (i.e. whole sub-trees are
moved). The option flat (false by default) controls the behavior if one of the items to move is a
descendant of another item to move (the ancestor). If true, the sub-tree rooted at the descendant will be
moved to the father. If false, the descendant will be moved as part of the sub-tree rooted at the ancestor.

If option doNotModify (false by default) is true, the final step of moving the items is suppressed. Other
than that, the operation behaves exactly the same way as with this option set to false, including returning
the same result and throwing the same exceptions, unless they occur during the actual move of the items
(which should not happen).

Parameters:

fatherId

the ID of the new father

beforeId

the insert position within the list of children of the new father, or a NIL UUID (either an empty string or
an UUID consisting of all zero)

itemIds

the list of IDs of the items to move

options

the options that affect the behavior of the operation; If missing, or if one of the option values is
missing, the default value will be used.

The operation returns an enumeration value that indicates whether or not items have been moved, and if not,
why they haven't been moved

5.6.3.25 convertToSetArticle

Synopsis:

string convertToSetArticle(SessionId sessionId,
 BItemId folderId,
 OperationMode opMode)
 throws BasketServiceFault;

This operation converts the specified basket folder into a set-article. Upon successful completion, the folder
item specified by the folderId parameter has been replaced by a new set-article item, all children of the
folder item are now children of the set-article item, and a subset of the descendants of the set-article item
(usually all) is part of the set-article. The item ID of the set-article item is returned.

The flags in the operation mode parameter opMode control the behaviour of the operation as described be-
low.

The following list describes in detail how the set of parts of the new set-article is constructed, how special
conditions are handled, and how the actual conversion of the folder to the set-article is finally done:

• Descendants of the folder that can never be part of a set-article due to their type are ignored (except
for set-article items, see below).

• If at least one descendant is a set-article item, and the breakUpSetArticles flag is set in
opMode, all such set-article items and their parts are added to the set of new parts.

• For each descendant that is neither a set-article item, a set-article part, or a sub-article item, add the
item to the set of new parts.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 207 of 298

EAIWS 4.16

• If at least one descendant is a sub-article item whose main article item is neither an element of the
set of new parts, nor part of a set-article, and the mainArticles flag is set in opMode, then ensure
that the main article items of all such sub-article items are elements of the set of new parts, adding
them if necessary.

• If the set of new parts contains one or more set-articles, the set-articles are broken up and the set-
article items are replaced in the set of new parts with the folders created in place of the set-article
items.

• The new set-article item is created as an immediate sibling of the folder item, all children of the folder
item are moved to the set-article item (including all their descendants), and the folder item is deleted.

• All items in the set of new parts become parts of the new set-article item.

5.6.3.26 breakUpSetArticle

Synopsis:

string[] breakUpSetArticle(SessionId sessionId, BItemId setArtId)
 throws BasketServiceFault;

This operation converts the specified set-article item into a basket folder item.

The operation converts a set-article item into a basket folder item as follows: A basket folder item is created
as a sibling of the set-article item, immediately preceding the set-article item. All parts are removed from the
set article item (i.e. they become independent items). All children of the set-article item are moved to the
folder item. The set-article item is deleted. Finally, the ID of the newly created folder item is returned.

5.6.3.27 collapseSetArticles

Synopsis:

void collapseSetArticles(SessionId sessionId, BItemId[] itemIds)
 throws BasketServiceFault;

This operation collapses zero or more set-articles.

Depending on the set-article mode of the basket view and the set-article-collapsed property of the set article
item, set-articles are displayed expanded (the set-article item and its parts are visible) or collapsed (only the
set-article item is visible). This operation affects the set-article-collapsed property of the specified set-article
items, and thus the display of these set-article items in views using SetArticleMode.Dynamic. The operation
iterates over all items specified by the itemIds parameter and collects all set-article items whose set-article-
collapsed property is false. Then it iterates over all set-article items thus found and sets their set-article-col-
lapsed property to true.

As EAIWS does not yet support basket views, this operation has no effect on the basket item structure. How-
ever, it may be useful if the session is saved to a project file and loaded into an application that supports
views.

5.6.3.28 expandSetArticles

Synopsis:

void expandSetArticles(SessionId sessionId, BItemId[] itemIds)
 throws BasketServiceFault;

This operation expand set-articles. It is the inverse of collapseSetArticles.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 208 of 298

EAIWS 4.16

5.6.3.29 addToSetArticle

Synopsis:

void addToSetArticle(
SessionId sessionId,
string[] itemIds,

 OperationMode opMode)
 throws BasketServiceFault;

This operation adds zero or more items as set-article parts to the set-article represented by their first set-art-
icle item or part ancestor. The flags of the operation mode 'opMode' control the behavior of the operation as
described below.

The operation takes a set of items, represented by the item IDs in the 'itemIds' parameter, and tries to con-
vert them to set-article parts of the set-article represented by their first ancestor that is either a set-article
item or set-article part. To do so, it creates a mapping from new parts to the set article they will be added to.
Once this has been done, all items in this map are added to the respective set-article. The following list de-
scribes this process in detail:

1. For each set-article item in the set of items, test whether there is an ancestor that belongs to another
set-article. If there is such an ancestor, and if the 'breakUpSetArticles' flag is set in 'opMode', then
add the set-article item and its parts to the map of new parts, with the ancestor's set-article being the
set-article they will be added to.

2. For each item, that is neither a set-article item, a set-article part, or a sub-article item, test whether
there is an ancestor that belongs to a set-article. If there is one, add the item to the map of new
parts, with the ancestor's set-article being the set-article the item will be added to.

3. If the 'mainArticles' flag is set in 'opMode', then test for each sub-article item, whose main article item
is not already a member of the map of new parts, whether the main article item has an ancestor
that belongs to a set-article. If there is one, add the main article to the map of new parts, with the an-
cestor's set-article being the set-article the main article item (and thus the sub-article item) will be ad-
ded to.

4. If the map of new parts contains one or more set-articles, the set-articles are broken up and the set-
article items are replaced in the map of new parts with the folders created in place of the set-article
items, retaining the set-article they will be added to. Furthermore, if the map of new parts contains
items to be added to the broken-up set-article, these items will now be added to the same set-article
as the broken-up set-article and its parts.

5. Finally, all items from the map of new parts are added to the set-article specified in the map

5.6.3.30 removeFromSetArticle

Synopsis:

void removeFromSetArticle(
SessionId sessionId,

 BItemId[] itemIds,
 OperationMode[] opMode)

 throws BasketServiceFault;

This operation removes parts of set-articles from their set-article.

The operation searches the specified set of items for all items that are part of a set-article, and removes
these items from their set-article. The list below describes the procedure in detail.

The flags in the operation mode 'opMode' control the behavior of the operation as described below.

1. From the set of items specified by the itemIds parameter, remove all items not currently part of a
set-article.

2. Search the remaining set of items for sub-article items of composite articles whose main article item

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 209 of 298

EAIWS 4.16

is not a member of this set. Add the main article items to the set if the mainArticles flag is set in
opMode.

3. Remove sub-article items from the set.

5.6.3.31 changeAlternativePositionState

Synopsis:

boolean changeAlternativePositionState(SessionId sessionId,
 BItemId[] itemIds,

 ItemSelectionOptions options,
 string ppName,
 boolean altPos)

 throws BasketServiceFault;

This operation can be used to modify the excluded calculation set of zero or more article items.

The itemIds and options parameters are used to compute an initial set of selected items. Items other
than basket main article items, user article items or set article items are removed from this set. The excluded
calculation sets of the remaining items are updated as follows:

If the altPos parameter is true:

• If the current excluded calculation set is the universal set, it is left unchanged.

• Otherwise, if the value of the ppName parameter is an empty string, the excluded calculation set is
set to the universal set.

• Otherwise, the value of the ppName parameter is added to the excluded calculation set.

If the altPos parameter is false:

• If the value of the ppName parameter is an empty string, the excluded calculation set is set to the
empty set.

• Otherwise, if the excluded calculation set is the universal set, it is first replaced with a set containing
the names of all price calculations currently used by the basket. Then, the entry equal to the value of
ppName is removed from the excluded calculation set.

The operation fails if the session ID or one of the item IDs is invalid, or the specified calculation (pricing pro-
cedure) name is neither empty nor equal to the name of one of the price calculations currently used by the
basket.

5.6.3.32 getItemProperties

Synopsis:

ItemProperties[] getItemProperties(SessionId sessionId,
 BItemId[] itemIds,

 GetItemPropertiesOptions options)
 throws BasketServiceFault;

struct GetItemPropertiesOptions : ItemSelectionOptions {
DescrType[] tmDescrMode,
string[] extraPriceInfoSelectors
boolean priceInfo,
string pricingProcedureName,
boolean positionNumbers,
boolean addStateCodes,
GetItemPropertiesTextMode textMode,
boolean preferUserDescriptions,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 210 of 298

EAIWS 4.16

boolean separateCurrencies,
boolean? IncludeCalculationErrorsInInconsistencies,
boolean? InactivePositionState,
boolean? articleClassifications

 }

The getItemProperties operation returns the item properties (not the OFML or OCD properties) of the
basket items specified by the itemIds parameter. The basket items must be part of the basket item tree
maintained by the basket service for the session identified by the sessionId parameter.

If itemIds parameter is an empty sequence, then the properties of all basket items will be returned. Other-
wise, the sequence of returned ItemProperties structures contains one entry for each passed item ID,
with the order of returned ItemProperties structures equal to the order of passed item IDs.

Unless explicitly specified otherwise, all fields of the ItemProperties structures (§5.6.1.20) returned by
this operation, and all fields of the FolderProperties (§5.6.1.21) and ArticleProperties (§5.6.1.27)
structures referenced by the ItemProperties structure, are non-null.

The folder and article fields of the ItemProperties structure are non-null if and only if the item is a
folder (field folder) or an article (field article).

The finalArticleNumber and/or variantCode fields of the ArticleProperties structure may be
null if the Online Configurator failed to fetch their values from the product database.

The currency, purchasePrice and salesPrice fields of the ArticleProperties structure may all
be null if the Online Configurator failed to fetch either price from the product database.

The options parameter has no effect if the itemIds parameter is empty, as all items are selected in this
case anyway. If the itemIds parameter is not empty, the list of selected items is determined as follows:

If the options parameter is missing (null), the list of selected items consists of one entry for each ID in
itemIds, in the same order.

If the options parameter is present (non-null), the initial list of selected items consists of one entry for each ID
in itemIds, in the same order.

The final order of selected items is determined by a pre-order traversal of the basket item hierarchy.

The option viewId of ItemSelectionOptions is supported by this operation. If it contains the ID of a
view then the behavior of the operation is changed as follows:

• Item IDs passed with parameter itemIds are interpreted as IDs of items within this view.

• The options parentItems and subItems, if set, affect the selection of additional view items.

• Instances of ItemProperties returned for view items

◦ contain the view item ID instead of the basket item ID in field itemId,

◦ do not contain fields visible and expanded,

◦ contain the ID of the view item representing the set-article instead of the set-article’s basket item
ID in field setArticleId,

◦ use field positionNumber to return a position number, and

◦ use field composableGeometries instead of composableGeometry to return composable
geometry information.

• Instances of ArticleProperties returned for view items differ from those instances returned for
basket items as follows:

◦ The quantity field contains the total quantity of all referenced basket article items in case of
merged article view items.

◦ The value of the pricingProcedureName option is used to determine the value of the deprec-
ated alternativePosition field.

◦ If the priceInfo option is true, the priceInfo field may be used to return price information

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 211 of 298

EAIWS 4.16

obtained from the article item’s calculation named by option pricingProcedureName.

◦ In case of merged article view items, fields ofmlUpdateState and geometryId return the
value of one randomly chosen basket item. This behavior may change in future versions of
EAIWS. Clients should use the geometry IDs returned by operation getAllItems (with option
basketItems set to true) instead of the geometry IDs returned by operation getItem-
Properties.

◦ In case of item properties returned for article items of views with merge mode Compact, field
subArticles may be used to return information of sub-articles folded into the view item that
represents the whole composite article.

• Instances of SetArticleProperties returned for view items differ from those instances returned
for basket items as follows:

◦ Field collapsed takes the set-article mode of the view into account. In case of Expand or
Collapse the value will always be false or true, respectively. In case of Dynamic the value
will be equal to the value returned for the basket’s set-article item69.

◦ Returned set-article part IDs are IDs of view items, not basket item Ids.

• tmDescrMode - a possible empty list of DescrType; If the list is not empty, a description composed
from article text table texts is returned in element <tmDescription> of complex type ItemProperties.
The description is built from non-empty texts in the article text table, in row order, except that texts
that are marked as invisible and texts not selected by this option are skipped.

Type GetItemPropertiesOptions defines the following options:

priceInfo

Controls whether or not summary price information should be returned in field priceInfo of type
ArticleProperties. Price information is returned if the value of this option is true, return of
price information is enabled70 and valid price information could be determined.

Return of this price information is made optional as it requires computation of calculation data, which
may be a bit expensive, especially if the use of group calculations is required, and unnecessary if the
client will fetch complete calculation data anyway.

The default value of this option is false.

pricingProcedureName

Contains the name of the pricing procedure to use to fetch price information. The pricing procedure
name is also used to compute the value of the deprecated alternativePosition property.

If option priceInfo is true and return of price information is enabled then the pricing procedure
name must be empty and the basket must use exactly one price calculation, or the pricing procedure
name must be equal to the name of one of the price calculations used by the basket.

The default value of this option is an empty string.

positionNumbers

This option is ignored if getItemProperties is called for basket items. If called for view items, the
option controls whether or not position numbers are returned using field positionNumber of type
ItemProperties.

The default value of this option is false.

includeCalculationErrorsInInconsistencies

If true, validation errors in all item calculations of an article item are considered an inconsistency of
that article item. If false, only OFML article inconsistencies are used to set fields inconsistencyFlag

69 the basket item, not the view item
70 application feature egr.eai.ws.basket.ReturnPriceInfo is available

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 212 of 298

EAIWS 4.16

and inconsistencyReason of complex type ArticleProperties.

The default value of this option is true.

articleClassifications

The option is used to control whether operation getItemProperties returns article classifications. The
default value of this option is false.

inactivePositionState

If true, operation getItemProperties returns information about inactive positions in field inactivePosi-
tionState of type ArticleProperties. Fields alternativePosition and excludedCalcualtions are not re-
turned. Otherwise, if false (the default value), information about inactive positions is returned as be-
fore in fields alternativePosition and excludedCalculations, and inactivePositionState is not returned.

The default value of this option is false.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• At least one of the elements of the itemIds sequence parameter is not a valid string representation
of an UUID.

• At least one of the elements of the itemIds sequence parameter does not identify an existing bas-
ket item.

• The Online Configurator failed to fetch some of the properties due to an internal error.

• If the options parameter is present and duplicate item Ids occure.

5.6.3.33 setItemProperties

Synopsis:

void setItemProperties(SessionId sessionId,
 BItemId itemId,
 ItemProperties properties)
 throws BasketServiceFault;

The setItemProperties operation can be used to set some of the item properties (not the OFML or OCD
properties) of the basket item identified by the itemId parameter.

The itemId parameter must identify a basket item which is part of the basket item tree maintained by the
basket service for the session specified by the sessionId parameter.

Fields of the passed ItemProperties structure (§5.6.1.20), and fields of the FolderProperties
(§5.6.1.21) and ArticleProperties (§5.6.1.27) structures referenced by the ItemProperties struc-
ture, are ignored if

• they are null,
• are irrelevant for the basket item’s type, or
• correspond to read-only properties of the item.

Thus, depending on the item type (§5.6.1.7), the following fields, if non-null, are used to set the correspond-
ing item properties:

Folder

folder.name
folder.showSubTotal

Article, Aggregate, PartialPlanning, UserArticle, SetArticle

article.quantity

Setting these properties for a sub-article item actually sets them for the main article item. Setting

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 213 of 298

EAIWS 4.16

them for the main article item of a composite article also affects the sub-articles of the composite art-
icle (including the sub-articles of sub-articles, if any).

UserArticle, SetArticle

article.manufacturerId
article.seriesId
article.baseArticleNumber
article.finalArticleNumber
article.variantCode
article.shortText
article.longText
article.featureText

UserArticle

article.currency
article.purchasePrice
article.salesPrice
article.packagingInfo

The value of fields that are ignored never causes the operation to fail. The value of the following fields, if not
ignored, is validated before any property of the basket item is set, and a failed validation causes the opera-
tion to fail before any item property is set:

article.manufacturerId, article.seriesId

The manufacturer and series IDs, if not empty, must adhere to the constraints specified in §5.6.1.27.

article.currency

The currency must be an ISO 4217 currency code (pseudo-currency code are not supported), even if
both the purchase price and sales price are ignored.

article.purchasePrice, article.salesPrice

These fields, if not ignored, require the currency field to contain a valid ISO 4217 currency code
(pseudo-currency code are not supported).

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter is not a valid string representation of an UUID.
• The itemId parameter does not identify an existing basket item.
• The validation of fields, as described above, failed.
• The attempt to set one of the properties failed due to an internal error.

5.6.3.34 getArticleData

Synopsis:

ArticleData getArticleData(SessionId sessionId,
 BItemId itemId,
 GetArticleDataOptions* options)
 throws BasketServiceFault;

The getArticleData operation returns all product data about the current configuration of a single article.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

For a description of the content of the returned ArticleData structure see 5.6.1.42.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 214 of 298

EAIWS 4.16

open session.
• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.
•
• The noProperties option was not set to true and the operation was not able to fetch the article’s

properties.
• For whatever reason the Online Configurator considered it necessary to reevaluate the product data

of the article and re-evaluation of the product data failed, possibly due to invalid relation knowledge
or a product database access error.

Changed operation getArticleData so it doesn't fetch choice lists of choice properties, thus speeding up the
whole operation.

5.6.3.35 getArticleFeatures

Synopsis:

ArticleFeature[] getArticleFeatures(SessionId sessionId,
 BItemId itemId,
 GetArticleFeaturesOptions* options)
 throws BasketServiceFault;

The getArticleFeatures operation is used to fetch the article features of an article item.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

For more information about returned article features, see §5.6.1.43.

If the getArticleFeatures operation is called for an user article or set article, the returned sequence of
article features is empty.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.

5.6.3.36 getMultiArticleFeatures

Synopsis:

ArticleFeatures[] getMultiArticleFeatures
(SessionId sessionId,
 UUID[] itemIds,
 GetMultiArticleFeaturesOptions? Options)

 throws BasketServiceFault;

Operation getMultiArticleFeatures is a more powerful variant of operation getArticleFeatures
(§5.6.3.35). It allows the client

• to query features of multiple articles in one go, and

• to use view item IDs instead of basket item IDs (if field viewId of parameter options is set accord-
ingly).

The selection of items whose article features are to be returned is performed as usual using the basket or
view item IDs specified with parameter itemIds and the subset of ItemSelectionOptions passed with
parameter options. Once the initial set of selected items has been determined, non-article items are re-
moved from the set (user- and set-article items are retained even though they always report an empty list of
article features (at least with the current implementation)).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 215 of 298

EAIWS 4.16

It is not an error to explicitly specify the ID of a non-article item, regardless of the set of item selection options
being used. In particular, specification of the top folder ID in combination with item selection option
subItems set to true may be used to fetch the features of all article items.

Once the set of article items has been determined, the operation fetches the article features of each article
item and returns them using one element of type ArticleFeatures (§5.6.1.44) for each article item, with
field itemId holding the basket or view item ID of the corresponding article item, and field features hold-
ing the list of individual article features as they would be returned by operation getArticleFeatures.

The order of ArticleFeatures elements in the return value is unspecified.

Note: Fields description and noInternal of type GetMultiArticleFeaturesOptions (§5.6.1.24)
are encoded as attributes, even though the same fields of type GetArticleFeaturesOptions (§5.6.1.23)
are encoded as elements.

5.6.3.37 getChoiceList

Synopsis:

PropertyValue[] getChoiceList(SessionId sessionId,
 BItemId itemId,
 string propClass,
 string propName,

GetChoiceListOptions options
)

 throws BasketServiceFault;
The getChoiceList operation returns the list of allowed property values71 for a single property.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

The propClass and propName parameters must identify a property of the article. The returned choice list is
empty if the property happens to be an internal property72 or a property explicitly hidden by relation know-
ledge, or if the choiceList field of the Property structure is false. Otherwise, the choice list is not
empty and contains at least the current property value.

See 5.6.1.38 for a description of the PropertyValue structure which is used as the element type of the re-
turned sequence.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.
• The propClass and propName parameters do not identify a property of the article.

5.6.3.38 getAllChoiceLists

Synopsis:

ChoiceList[] getAllChoiceLists(SessionId sessionId,
 BItemId itemId,

GetChoiceListOptions options

)
 throws BasketServiceFault;

71 If the addValues field of the Property structure is true, then the choice list contains only proposed values.
72 This is condition is quite unlikely as the current version of the basket service does not expose internal properties.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 216 of 298

EAIWS 4.16

The getAllChoiceLists operation returns a possible empty sequence of ChoiceList structures
(§5.6.1.45), one for each property of the article that is visible, editable, and has a choice list73.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.

5.6.3.39 setPropertyValue

Synopsis:

string setPropertyValue(SessionId sessionId,
 BItemId itemId,
 string propClass,
 string propName,
 string value

 SetPropertyValueOptions? options)
 throws BasketServiceFault;

The setPropertyValue operation is used to assign a new value to an editable property of an article.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

The propClass and propName parameters must identify an editable property of the article.

The value parameter contains the new property value.

If argument options is missing the operation behaves as before (all options controlling computation of
change flags are effectively true).

For string properties that do not allow additional values the value must be equal to one of the values from the
choice list.

For numeric properties and length properties, the string must consist of an optional minus sign (-) , followed
by a sequence of one or more decimal digits, and, if the precision74 of the property is greater than zero, fol-
lowed by a decimal point and one or more decimal digits, but no more than specified by the precision 75. If the
property does not allow additional values and has no intervals then the value must be numerically identical to
one of the values from the choice list. If the property has at least one interval then the value must be within
one of the intervals, or, for OCD 4.0 and later, a member of the choice list.

Setting a property value usually involves the evaluation of the product data’s relation knowledge. The
setPropertyValue operation has no effect if, for whatever reason, evaluation of the relation knowledge
fails.

The setPropertyValue operation returns a string consisting of zero or more characters, each character
indicating a particular side effect of the assignment of the new property value. The following characters are
defined:

S property Shown

 An additional property became visible.

H property Hidden

 A property that has been visible before has been hidden, i.e. became invisible.

73 The visible, editable and choiceList fields of the Property structure are all true.
74 The precision is the value of the decDigits field of the Property structure.
75 The Online Configurator may accept other number formats too, but formats other than the one described here may not be accepted

by later versions of the Online Configurator.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 217 of 298

EAIWS 4.16

V other property Value changed

Assignment of the new property value caused a change of the value of another visible property.

v invisible property value changed

Assignment of the new property value caused a change of the value of an invisible property.

U property value Unchanged

Assignment of the new property value did not result in a change of the value of this property. One
reason may be that the property was set to the original value. Another reason may be that the
change was rejected.

A property value Adjusted

Assignment of the new property value resulted in a change of the value of this property, but the new
value is different from the assigned one. One reason may be that a numeric property value has been
rounded to the precision of the property as specified by the product data.

C Choice list changed

At least one of the property choice lists has changed.

I Interval changed

At least one of the interval lists has changed.

a position added

Assignment of the new property value resulted in at least one position to be added to the basket item
hierarchy.

r position removed

Assignment of the new property value resulted in the removal of at least one position from the basket
item hierarchy.

u other position needs update

Assignment of the new property value resulted in a change to at least one other position (in addition
to the currently configured position).

In case of the ‘a’, ‘r’ and ‘u’ flags, the other position or positions affected always belong to the same hierarchy
of composite articles (§5.6.1.8 for more information). Other than that there are no guarantees, in particular
there is no guarantee that the other position or positions are immediate sub-articles of the modified position.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.
• The propClass and propName parameters do not identify an editable property.
• The property is a numeric or length property, but the new property value cannot be parsed as a

decimal number.
• The property has a choice list and no intervals, does not allow additional values, and the new value

is not a member of the choice list.
• The property has a choice list and at least one interval, the value is not within one of the intervals,

and, for OCD 4.0 and later, the value is not a member of the choice list.
• Evaluation of relation knowledge failed due to invalid relation knowledge or a database access error.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 218 of 298

EAIWS 4.16

5.6.3.40 getGeneratedImage

Synopsis:

URL getGeneratedImage(SessionId sessionId,
 BItemId itemId,
 string[] options)
 throws BasketServiceFault;

The getGeneratedImage operation is used to compute an image for the article identified by the itemId
parameter.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

The options parameter is a sequence consisting of zero or more option strings, where each option string
consists of a key and value, separated by an equal sign (=) (e.g. "format=jpg"). The following options are
available (numbers delimited by horizontal ellipsis (…) specify minimum and maximum values, default values
are displayed bold):

tag=string:default

The value of this option must be a valid Unicode identifier. Each article item stores a reference to the
last image generated for this tag and item until the configuration of the article item is changed76. Fur-
thermore, the saveSession (§5.4.3.14) and loadSession (§5.4.3.15) operations of the session
web service save and load these images and each (article) item’s mapping from tag to image.

An image returned by operation getGeneratedImage when invoked without option tag, with an
empty tag, or with tag default is not used as the default generated article image for the current
configuration of the article if the specified format is neither JPEG nor PNG.

width=int:32…512…2048

width of the image in pixel

If the width option has been specified, but not the height option, the specified value is used for
both the width and height of the generated image. If neither option is specified, then the default im-
age width is 512 pixels.

The width option must not be used if the scale option is used, as the scale option, in combina-
tion with the margin option, determines the width of the generated image.

For SVG, PDF, EPS and PS exports the value of width must be specified in point (1/72 inch). The
default value is 384 pt. The maximum value is 3370 pt.

height=int:32…512…2048

height of the image in pixel

If the height option has been specified, but not the width option, the specified value is used for
both the width and height of the generated image. If neither option has been specified, then the de-
fault image height is 512 pixels.

The height option must not be used if the scale option is used, as the scale option, in combina-
tion with the margin option, determines the height of the generated image.

For SVG, PDF, EPS and PS exports the value of height must be specified in point (1/72 inch). The
default value is 384 pt. The maximum value is 3370 pt.

format=enum:JPG|PNG|TGA|TIFF|SVG|PDF|EPS|PS|MCP

format of the resulting image file

The default image file format depends on whether or not the scale option is used. PNG is used for
true to scale images, JPEG otherwise.

Note: The export of SVG, PDF, EPS and PS is on an experimental stage. Important features still

76 In case of a composite article, images stored for aggregates and partial plannings containing the changed article are reset too.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 219 of 298

EAIWS 4.16

missing are: transparent background, true-to-scale images. The other options supported and allowed
are width, height and hideSubArticles. The value of width and height must be specified
in point (1/72 inch). The default value is 384 pt. The maximum value is 3370 pt.

MCP exports Multi Content Picture.

hideSubArticles=boolean

Controls whether or not sub-articles of composite articles are hidden during image generation (and
thus are not shown together with the composite article).

The default value depends on the exported image format. In case of format=MCP, the default value
is false. In all other cases, it is true.

If the operation is invoked for a sub-article, then this sub-article is not hidden, regardless of the value
of this option. If, however, the sub-article happens to be a composite article, then the option affects
the hiding of sub-articles of this nested composite article.

antialias=boolean:false

Controls the use of an anti-aliasing algorithm during image generation.

Note that the improved image quality is achieved at the cost of image generation time (about five
times slower). Especially for large images this may make a significant difference.

The default value depends on the value of the resample option (true if resample=1, false oth-
erwise).

resample=int:1…2…32

The resample option allows for the rendering of the image using a resolution greater than specified
by the width and height options, or computed based on the scale factor for true-to-scale images.
The required width and height are multiplied by the resampling factor to determine the image dimen-
sions used during rendering. The rendered image is scaled down by the given factor to produce an
image with the required width and height.

If the image dimensions used during rendering exceed a certain limit (4096x4096 in EAIWS version
3.0), the resampling factor is reduced automatically.

Rendering with resample=4 and antialias=false usually results in about the same image gen-
eration time as resample=1 and antialias=true (the default behavior prior to EAIWS 3.0 RC 2),
but produces better results.

quality=int:10…80…100

quality of generated JPEG image

ambient=float:0.0…0.2…1.0 float:0.0…0.2…1.0 float:0.0…0.2…1.0

ambient color (brightness); The individual values are for red, green and blue.

In case of renderMode=PBR the option ambient can be used to control the brightness of the
rendered image. The default value of option ambient with renderMode=PBR is 0.75 0.75 0.75.
For other render modes the default value continues to be 0.2 0.2 0.2.

background=float:0.0…1.0 float:0.0…1.0 float:0.0…1.0

color of background; The individual values are for red, green and blue.

If the selected image format supports an alpha channel, then the special value transparent may
be used instead of the color components to produce an image with a transparent background.

enable2D=boolean:false

If set to true, 2D-geometries are rendered at height zero.

For raster image formats, the enable2D option defaults to false. For vector graphics formats, the
enable2D option defaults to true.

enable2DZBuffer=boolean:false

If set to true, the Z-buffer is enabled during rendering of 2D-geometries. Consequently, 2D-geomet-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 220 of 298

EAIWS 4.16

ries may be hidden by 3D-geometries.

The value of this option is processed, but otherwise ignored, if the value of the enable2D option is
false.

The default value is false. Setting this option to true should affect the generated (raster) image if
and only if both 2D and 3D geometries are rendered.

enable3D=boolean:true

Controls whether or not to render 3D-geometries.

Note that the enable2D option must be set to true if this option is set to false. Otherwise, the op-
eration fails.

For raster image formats, the enable3D option defaults to true. For vector graphics formats, the
enable3D option defaults to false.

layerControl

The argument of this option must be a string that adheres to the following grammar:

 layer-control = [global] { specific }

 global = "*" | "!"

 specific = onoff layer-spec { suffix }

 onoff = "\+" | "-"

 suffix = "r" | "i"

 layer-spec = "'([^']|'')*'" | "\"([^\"]|\"\")*\""

(Character sequences enclosed in double quotes represent terminal symbols specified as POSIX
Extended Regular Expressions, with the addition that \" represents an ordinary double quote charac-
ter that does not terminate the character sequence.)

The layer control string is processed left to right. If global is present, all layers are initially switched
on ('*') or off ('!'). 'layer-spec' is a string whose meaning depends on the possibly empty sequence of
suffixes. If the 'r' suffix is present, it is a POSIX Extended Regular Expression, selecting all layers
whose complete name matches the regular expression. Otherwise it is an ordinary string that must
match a complete layer name. If the 'i' suffix is present, matching is done in a case-insensitive way. It
is not an error if suffixes appear more than once. Selected layers are switched on if onoff is '+', and
off if onoff is '-'.

After the export, layers are switched back to their original state.

renderMode=enum:Textures|Color|GrayScale|BlackWhite|PBR

the rendering mode

Option renderMode=PBR enables Physically Based Rendering. Option ambient can be used to
control the brightness of the rendered image. The default value of option ambient with
renderMode=PBR is 0.5 0.5 0.5. For other render modes the default value continues to be 0.2
0.2 0.2.

outline=boolean:false

whether or not to outline edges; applies to render modes Textures and Color only

fadeBorder=int:0…<max-value>

controls soft fading-out of image margin. The parameter specifies the with of the margin in pixels.
<max-value> is half the minimum of the width and height of the generated image.

If the scale option is used to generate a true to scale image, the fadeBorder option has no effect,
and the upper bound of the option value is not checked.

shadowPlane=boolean:true

whether or not a shadow plane will be displayed below the article.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 221 of 298

EAIWS 4.16

This option is ignored and the generated image will never contain a shadow plane if the scale op-
tion is used to generate a true to scale image, or if the viewpoint height is less than or equal to zero.

The following options, prefixed with shadowPlane., are ignored if the generated image does not
contain a shadow plane.

shadowPlane.color=float:0.0…0.5…1.0 float:0.0…0.5…1.0 float:0.0…0.5…1.0

affects the color of the shadow plane; The individual values are for red, green and blue.

The option is ignored if the generated image does not contain a shadow plane.

In case of shadowPlane.filter=DOF the default value is: 0.25, 0.25, 0.25

shadowPlane.smoothness=float:0.001…0.2…1.0

Default value depends on shadowPlane.filter selection:

Lightmap: 0.02
Gauss, Linear, Invers: 0.2
Gauss2: 1.0
DOF: 0.05

affects the smoothness of the shadow plane boundary

Smaller values result in a sharper shadow boundary, whereas larger values result in a more blurred
boundary. The option is ignored if the generated image does not contain a shadow plane.

shadowPlane.mirror=float:0.0…1.0

This option, if set to a non-zero value, causes the mirrored image of the rendered object to be dis-
played on the shadow plane.

shadowPlane.colorMode=enum:Color|GrayScale

This option controls whether the mirrored image on the shadow plane is displayed in color or gray
scale.

shadowPlane.filter=enum:Gauss|Linear|Invers|Gauss2|Lightmap|DOF

If not set, or set to an empty string, the shadow is based on the bounding box of the object. This is
the default behavior. Otherwise, the shadow is based on the distance between the shadow plane
and individual parts of the object. The specified filter selects the algorithm used to spread the
shadow over the shadow plane. Available filters are:

Gauss very smooth
Linear moderately smooth
Invers hard at the center, outwards too smooth
Gauss2 smooth, based on geometry distance (recommended)
Lightmap To support OSAO-based shadows on the shadow plane
DOF Depth of Field algorithm

shadowPlane.border=float:-1.0…1.0

affects the size of the shadow plane

If the value is zero then the shadow is about as large as the object. Values less than zero result in
smaller shadows, values larger than zero in larger shadows.

This option is ignored if the shadowPlane.filter option is set.

shadowPlane.mapSize=int

Specifies the size of the texture used for the shadow.

Attention: This parameter has a significant effect on rendering performance!

The default value is computed depending on the image size and the selected shadow plane filter. If
Gauss2 or Lightmap is selected as the shadow plane filter, the default shadow plane map size is
equal to the sum of image width and height divided by two. Otherwise, it is equal to the sum of image
width and height first divided by two and then divided by eight (not necessarily the same as division
by 16 due to the use of integer arithmetic). The minimum default map size is 1.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 222 of 298

EAIWS 4.16

The default value for filter modes other than Gauss2 is much smaller because rendering times grow
excessively for values greater than 256, and furthermore other than with Gauss2, reasonable results
are achieved with smaller map sizes.

The shadow plane map size has been limited to a maximum of 4096 in case of shadow plane filter
mode Gauss2 and 512 for all other filter modes, including no filter. Greater values result in excessive
rendering times, especially in case of filter modes other than Gauss2.

In case of shadow plane filter mode DOF the default value is computed based on clamp((width +
height) / 2, 1, 4096)77

This option is ignored if the shadowPlane.filter option is not set.

shadowPlane.maxHeight=float

Specifies the maximum height of objects considered for the generation of shadows. The effect on the
shadow is maximal at 0.001 height (i.e. if the object is immediately above the shadow plane), and di-
minishes up the the specified height.

The default value is the height of the bounding box (relative to the xz-plane) of the object being
rendered.

In case of shadow plane filter mode DOF the default value is 0.25.

This option is ignored if the shadowPlane.filter option is not set.

shadowPlane.radius=float

For shadow plane filter Lightmap the default value is computed depending on the height of the
bounding box.

shadowPlane.intensity=float:0.0…0.3…1.0

In case of linear color workflow78 the default value is 1.0.

shadowPlane.samples=int:1…20…256

For lightmap-based shadow planes.

projectionMode=enum:Perspective|Orthographic

sets the projection mode used to render the image

The default projection mode depends on whether or not the scale option is used. Orthographic pro-
jection is used for true to scale images, perspective projection otherwise. In fact, specifying a projec-
tion mode other than Orthographic is not allowed for true to scale images.

zoom=float:1.0…30.0…89.0

alpha=float:-180.0…-15.0…360.0

beta=float:-90.0…20.0…90.0

The zoom (angle of view), alpha (longitude of view point) and beta (latitude of view point) paramet-
ers are used to compute both the angle of view and the position (view point) of the camera.

The center of the bounding box is always used as the reference point. The view point is located at
the axis starting a the reference point and pointing into the direction specified by the alpha and
beta angles.

If orthographic projection is used, a possibly specified zoom is ignored.

If perspective projection is used, the distance between view point and reference point is computed
such that, given the specified zoom, the article plus some small margin is always visible. Further-
more, if the latitude of the view point has not been explicitly specified, the height of the view point is
limited to about 1.7 meter.

If the scale option is not used, the default values for zoom, longitude and latitude are 30.0, -15.0
and 20.0.

77 Width and height are the width and height of the generated image.
78 Server startup file option egr.eai.gf.color_space=LinearRGB or option renderMode=PBR of operation

getGeneratedImage.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 223 of 298

EAIWS 4.16

If the scale option is used, the zoom option must not be specified. Furthermore, both the longitude
and latitude must be multiples of 90.0 degree. The default value for the longitude is zero degree, and
the default value for the latitude depends on the longitude. If the longitude is zero, the default latitude
is 90.0 degree. Otherwise, it is zero degree.

In any case, if the latitude is ±90.0 degree, then the longitude must be zero.

scale=float:1.0…10,000.0

The scale option may be used to generate a true to scale image. The value of the scale option
species the number of pixels per meter.

Use of the scale option is mutually exclusive with the width, height and zoom options and re-
stricts the set of available values for the projectionMode, alpha and beta options.

Image generation fails if the chosen scale results in an image width and/or height greater than 2048
pixels (including the margin).

margin=int:0…5…512

The margin option may be used together with the scale option to add a margin of the specified
number of pixels around the image. Thus the width and height of the generated image is computed
as the minimum required width and height to fit the image representation of the article plus twice the
margin.

If the scale option is not used, the margin option must not be used either.

enableShaders=boolean:true

This option, if set to true, enables the use of GL shading language.

If the renderMode option is set to a value other than Textures, shaders are always disabled, re-
gardless of the value of the enableShaders option.

Starting with EAIWS 3.1, the default value for this option is true as the use of shaders does not only
result in images of better quality, but also reduces rendering time.

mcp.obx=boolean:true

Format: MCP

If true, the MCP container contains the file articles.obx with commercial information about the ob-
jects.

mcp.comIDs=boolean:false

Format: MCP

If mcp.obx is false, but this option is true, the objects.xml file contained in the MCP container uses
the <comID> element to store the commercial ID (basket item ID) of each object. This may violate
the MCP specification, but may be used to optimize cases where the client needs to associate parts
of the image with basket positions, but does not need the articles.obx file (because it obtains the
information contained in this file in some other way).

If mcp.obx is true, the value of this option is ignored.

A client that receives an MCP URL from the getGeneratedImage operation can now always ac-
cess all member files of an MCP file by stripping of the '.eimg' suffix from the MCP URL and append-
ing a slash followed by the member file name.

ars=boolean:false

Enables the use of Article-specific Rendering Setups (ARS)

ars.camera=boolean:true

Enable/disable use of the camera setup specified in the ARS database.

ars.lighting=boolean:true

Enable/disable use of the lighting specified in the ARS database.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 224 of 298

EAIWS 4.16

ars.view=<view-id> (default: empty)

Specify alternative view ID that can be used to select a non-default ARS setup (if provided by the
database).

osao=boolean:false

Obsolete! Option is still accepted, but otherwise ignored for image generation..

Enables Object Space Ambient Occlusion (has no effect on OSAO-based shadows on the shadow
plane, as described below)

osao.radius=float:0.002…10.0…

Obsolete! Option is still accepted, but otherwise ignored for image generation.

osao.intensity=float:0.0…0.3…1.0

Obsolete! Option is still accepted, but otherwise ignored for image generation..

osao.mapSize=int:32…1024…4096

Controls the total size (width and height in texels) of the lightmap computed for all surfaces of the
article.

osao.smoothness=float:0.001…0.02…1.0

osao.samples=int:1…20…256

viewId=<view-id>

If the option is present then its value must be either the NIL-UUID (possibly represented by an
empty string) or the ID of a basket view used by the current session.

If the option is not present, or if its value is the NIL-UUID, then the item ID is interpreted as the ID
of a basket item. Otherwise the item ID is interpreted as the ID of a view item of the specified view,
and the image is generated for the basket item referenced by this view item, or, in case of merged
article view items, for one basket item randomly chosen from the set of referenced basket items. An
error occurs if the referenced basket item is not an article item.

Furthermore, if the viewId option specifies a valid view ID, the tag option is not present, has an
empty value, or has value default, and the hideSubArticles option is not present, the option
hideSubArticles=false is added if the view uses merge mode Compact or the type of the ref-
erenced article is PartialPlanning79.

The getGeneratedImage operation returns an empty string if the product data does not support automatic
generation of article images, if the Online Configurator has been configured not to generate article images, if
the necessary license feature could not be leased during start-up of the Online Configurator, or if the process
of generating the article image failed for whatever reason. Otherwise, the operation returns an URL referen-
cing the generated image. The URL remains valid until the session is explicitly closed by the closeSession
operation of the session service, or is automatically closed after a configurable time of inactivity (§4.1.6).

If a true to scale image has been generated (by use of the scale option), the returned URL contains a query
part specifying the width and height of the generated image as well as the local bounding box of the article’s
3D geometry. The query part may or may not be stripped from the URL before the URL is used to fetch the
image.

The query part is separated from the URL path by a question mark (?) and consists of a sequence of key-
value pairs separated by ampersands (&). Each key-value pair consists of a key, an equals sign (=), and in-
tegral or floating point number. The keys width and height are used to return the dimension of the gener-
ated image in pixels. Their values are positive integers. The keys xmin, ymin, zmin, xmax, ymax and zmax
are used to return the dimension of the local bounding box of the article’s 3D geometry within a right-handed
coordinate system with a horizontal xy-plane. Their values are floating point numbers in computerized sci-
entific notation or decimal format, depending on the precision and the value in meter after rounding.

The getGeneratedImage operation may be called multiple times for the same article item with different op-
tions. For each set of options a new image will be generated. Successive calls of getGeneratedImage for

79 In other words, if operation getGeneratedImage is used to generate the default article image through a view item then, unless
explicitly specified otherwise, the value of option hideSubArticles is chosen as appropriate for the image to be displayed in the
order list.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 225 of 298

EAIWS 4.16

the same article item with an identical set of options will not regenerate the image unless there was an inter-
vening call of the setPropertyValue operation.

If operation getGeneratedImage is invoked with the NIL-UUID (or an empty string) as item ID, and the
viewId option is not present or specifies the NIL-UUID (or an empty string), the specified options are stored
for the current session and later used whenever an article image needs to be generated on demand.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.
• One of the specified options has an invalid value80 81.
• If used to set default image generation options and the specified format is neither JPEG nor PNG.

Change behaviour of operations getGeneratedImage and getExportedGeometry of basket service:

If the operation is invoked to get an image or geometry for a set-article item, and the geometry compositor
fails to obtain the geometry for at least one set-article part, the operation terminates with a
BasketServiceFault instead of returning an empty string (as was the case before). The field `partComposi-
tionFailures` of the fault contains information about *all* parts that should have a geometry, but failed to
provide one.

Mechanism that allows HTTP client to control Content-Disposition response header for GET requests
referencing files in the session cache.

Client control of the header Content-Disposition for files in the session cache.

5.6.3.41 getArticleRenderingSetup

Synopsis:

ARSRenderingSetup getArticleRenderingSetup(SessionId sessionId,
 string catalogId,
 string manuId,
 string seriesId,
 string baseArtNr,
 string *ofmlVarCode,
 string[] viewIds)
 throws BasketServiceFault;

The operation getArticleRenderingSetup is used to access data from ARS (article-specific rendering
setup) database82.

The rendering setup consists of information about the camera setup (position and orientation) and
information about lighting (ambient light and light sources as known from OpenGL).

80 The current implementation does not enforce the allowed value ranges specified for the alpha and beta option values. They should
nevertheless be honored by a client of the basket service as this is not guaranteed for future versions of the Online Configurator.

81 If not explicitly mentioned otherwise, the value of an option must always be valid according to the specification, even if the option is
ignored, or the operation will fail.

82 For further information see ARS specification.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 226 of 298

EAIWS 4.16

struct ARSRenderingSetup {
 ARSCamera *camera; // element
 ARSLighting *lighting; // element
}

Reference point, viewpoint and positions of light sources are defined by the origin of some coordinate system
and the point’s or position’s coordinates within that coordinate system. The coordinate system can be
cartesian or spherical.

enum ARSCoordinateSystem {
 Cartesian,
 Spherical
}

The origin can be defined as either the origin of the local coordinate system, the center of the bounding box
plus some offset, the reference point or the view point.

enum ARSOriginType {
 LocalCoordinateSystem,
 BoundingBox,
 ReferencePoint,
 ViewPoint
}

The offset is computed as the size of the bounding box in each direction multiplied by x/y/z scaling factors
defined as part of the origin.

struct ARSOrigin {
 ARSOriginType type; // attribute
 float x; // attribute
 float y; // attribute
 float z; // attribute
}

As mentioned above, coordinates are specified as either cartesian or spherical. The member
coordinateSystem of ARSCoordinates defines the type of coordinates used. The actual data type cor-
responds to the specified type of coordinate system.

abstract struct ARSCoordinates {
 ARSCoordinateSystem coordinateSystem; // attribute
}

If cartesian coordinates are used, the axes of the coordinate system have the same direction as the corres-
ponding axes of the object’s local coordinate system.

struct ARSCartesianCoordinates : ARSCoordinates {
 float x; // attribute
 float y; // attribute
 float z; // attribute
}

If spherical coordinates are used, the zenith direction corresponds to the direction of the y-axis of the object’s
local coordinate system, and the azimuth is measured counter-clockwise from the positive z-axis (0°) to the
positive x-axis (90°).83

Azimuth and elevation are specified in degree. EAIWS does not impose any limits on the values of radius,
azimuth and elevation.

83 Conversion of spherical into cartesian coordinates is done as follows (radius r, elevation θ, azimuth φ): y = r sin θ ; x = r cos θ sin φ ;
z = r cos θ cos φ

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 227 of 298

EAIWS 4.16

struct ARSSphericalCoordinates : ARSCoordinates {
 float azimuth; // attribute
 float elevation; // attribute
 float radius; // attribute
}

The origin type of the reference point is either LocalCoordinateSystem or BoundingBox. The coordin-
ates of the reference point are always specified as cartesian coordinates.

struct ARSReferencePoint {
 ARSOrigin origin; // element
 ARSCartesianCoordinates coordinates; // element
}

The origin of the viewpoint is either LocalCoordinateSystem, BoundingBox or ReferencePoint.

struct ARSViewpoint {
 ARSOrigin origin; // element
 ARSCoordinates coordinates; // element
}

In addition to reference and viewpoint, the camera setup defines the projection mode and zoom.

In perspective mode, the zoom is passed unmodified to gluPerspective, defining the field of view angle,
in degrees. In orthographic mode, the top and bottom values passed to glOrtho are computed as
±tan(zoom ∙ π / 180.0), thus defining the coordinates for the top and bottom horizontal clipping planes.

enum ARSProjectionMode {
 Perspective,
 Orthographic
}

struct ARSCamera {
 ARSReferencePoint referencePoint; // element
 ARSViewpoint viewpoint; // element
 ARSProjectionMode projectionMode; // attribute
 float zoom; // attribute
}

Lighting information consists of the ambient light and a possibly empty list of light sources.

struct ARSLighting {
 Color ambientLight; // element
 ARSLightSource[] lightSources; // element
}

Light sources are defined the same way as in OpenGL.

enum ARSLightSourceType {
 Directional,
 Positional
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 228 of 298

EAIWS 4.16

struct ARSLightSource {
 ARSOrigin origin; // element
 ARSCoordinates coordinates; // element
 Color ambientLight; // element
 Color diffuseLight; // element
 Color specularLight; // element
 float constantAttenuation; // attribute
 float linearAttenuation; // attribute
 float quadraticAttenuation; // attribute
 ARSLightSourceType type; // attribute
}

Lights are defined by their red, green and blue components, with values being between zero and one, both
inclusive.

struct Color {
 float red; // attribute
 float green; // attribute
 fluat blue; // attribute
}

The catalog ID, manufacturer ID and series ID passed to getArticleRenderingSetup must be specified
and valid.

The base article number must be specified and must not be empty.

The OFML variant code must be a valid OFML variant code. It should be equal to the OFML variant code of
the article instance whose rendering setup is to be determined. If it is missing, an empty OFML variant code
is assumed instead.

The list of view IDs may be empty. If so, a list containing only the default view ID (an empty string) is used in -
stead.

For each view ID, the operation looks for a rendering setup matching the specified parameters. The first one
found is returned. If no rendering setup is found, nothing is returned.

5.6.3.42 getImages

Synopsis:

ImageInfo[] getImages(SessionId sessionId,
 BItemId itemId,

 GetImagesOptions options)
 throws BasketServiceFault;

The getImages operation is used to fetch all images stored for a particular basket item.

The itemId parameter must identify an item that is part of the basket item tree maintained by the basket
service for the session identified by the sessionId parameter. The operation may be invoked for any type
of item, although, with the current implementation (version 3.1 of the Online Configurator), the returned list of
ImageInfo instances will be empty except for OFML and OCD article items.

The operation returns the list of image associated with the specified basket item. Each returned instance of
ImageInfo has a distinct tag, multiple instances may reference the same image.

As a special case, article items may return an ImageInfo with an empty tag. If so, the referenced image is
said to be the PBK image, as this functionality has been implemented for compatibility with pCon.basket and
other applications based on pCon.basket technology. See §Fehler: Verweis nicht gefunden for more informa-
tion.

The item selection options are used as usual. To preserve backwards compatibility, however, the operation
continues to take a single item ID instead of a list of item IDs as argument.

Items of type Aggregate may have two default article images, one with sub-articles hidden and one with

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 229 of 298

EAIWS 4.16

sub-articles shown (although not necessarily visible). The default article image returned by operation
getImages depends on the item type and, if a basket view is used, the merge mode of the view:

• The default article image of items of type PartialPlanning will always show sub-articles.

• Default article images of items of all other types do not show sub-articles unless the item is a view
item and the view uses merge mode Compact.

The getImages operation never attempts to generate an image. It returns all images generated for a partic-
ular item, not only the default article image. However, if the item is an article view item and the view uses
merge mode Articles, or it is a view item representing a sub-article and the view uses merge mode
SubArticles or Compact, these additional images are not returned.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify a basket item.

5.6.3.43 getExportedGeometry

Synopsis:

URL getExportedGeometry(SessionId sessionId,
 BItemId itemId,
 string[] options

)
 throws BasketServiceFault;

The getExportedGeometry operation is used to export the 3D geometry of the article identified by the
itemId parameter.

The itemId parameter must identify an article item that is part of the basket item tree maintained by the
basket service for the session identified by the sessionId parameter.

The options parameter is a sequence consisting of zero or more option strings, where each option string
consists of a key and value, separated by an equal sign (=) (e.g. "format=3DS"). The following options are
available (default values are displayed bold):

format=enum:3DS|DWG|GFX|SKP|FBX|OBJ|DAE|IGXC|GFJ|GLTF|USD|PEC

The format option specifies the format that will be used by the geometry export. Currently suppor-
ted formats are 3DS (the default), DWG, GFX (for EOX-GFX84), FBX and SKP85.

format=GLTF

In addition to the standard options hideSubArticles, layerControl, centerXZ, compression,
and scale the following options are supported:

ascii=<boolean> - If false (default value), the export produces a single GLB file. Other-
wise the export produces a ZIP file containing a file named geometry.gltf and zero or
more additional files referenced with relative paths by the GLTF file.

To get an URL for individual files, the client may replace the .zip suffix of the returned URL
with a slash and the name/path of the file as used in the ZIP file.

Option compression=true may not be used with ascii=false. compression=false is ignored
if used with ascii=false.

texTrans=<boolean> - If set to true, exports texture coordinates with transformation. This

84 EOX-GFX is a format that does not include the actual geometries, but contains a list of geometries and materials as well as
instructions on how to compose them to the final geometry. Furthermore, it may reference (and be delivered together with) an OBX
file that contains commercial information for the exported article.

85 Only available on Microsoft Windows.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 230 of 298

EAIWS 4.16

way at most one set of UV coordinates is written, which most viewers are able to cope
with better.

This export requires license feature egr.eai.server.export.gltf.

format=USD

In addition to the standard options hideSubArticles, layerControl, centerXZ, compression,
and scale the following options are supported:

ascii=<boolean> - If false (default value), the export produces a single USDZ file. Other-
wise the export produces a ZIP file containing a file named geometry.usda and zero or
more additional files referenced with relative paths by the USDA file.

To get an URL for individual files, the client may replace the .zip suffix of the returned URL
with a slash and the name/path of the file as used in the ZIP file.

Option compression=true may not be used with ascii=false. compression=false is ignored
if used with ascii=false.

texTrans=<boolean> - If set to true, exports texture coordinates with transformation. Files
produced with texTrans=true can currently not be processed by ArKit (Apple).

This export requires license feature egr.eai.server.export.usd.

centerXZ=boolean:false

Being either true or false, to most geometry exports (all except CCL and EGMS). If set to true (de-
fault value is false), the geometry is exported so its bounding box is centred around the Y (vertical)
axis. Y coordinates are not affected.

dwgSymbol=boolean:false

Formats: GFJ

Default: false

Being either true or false, to GFJ geometry export. If true (default value is false), the GFJ file refer-
ences a single 2D DWG file containing the 2D geometry of the exported object.

hideSubArticles=boolean:false

Formats: all

Controls whether or not sub-articles of composite articles are hidden during the export (and thus are
not exported together with the composite article).

If the operation is invoked for a sub-article, then this sub-article is not hidden, regardless of the value
of this option. If, however, the sub-article happens to be a composite article, then the option affects
the hiding of sub-articles of this nested composite article.

serverBase=url

Formats: GFX, IGXC,GFJ

The serverBase option, if specified, should be a valid (HTTP) URL. It is used by exports that pro-
duce files which contain URLs to other resources, like images or geometries. The relative path of the
image or geometry resource (like OFML/data/…) is resolved86 against the server base. The resulting
URL is then written to the exported file.

The default value for serverBase is http://hostname:port/, where hostname and port are
derived from the header of the HTTP request carrying the body of the getExportedGeometry op-
eration.

86 Note that the parsing of the serverBase option fails if the URI is relative or opaque, or has a query or fragment component.
Furthermore, it automatically appends a slash to the path component if the path component does not already end with a slash.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 231 of 298

EAIWS 4.16

geometryExtensions=extension-list:.geo,.3ds,.dxf,.dwg,.obj,.glb,.gltf

imageExtensions=extension-list:.rgb,.tga,.jpg,.bmp

Formats: GFX, IGXC, GFJ

These options are used to specify the set of geometry and image file formats the client is willing to
deal with as well as the search order. The values of these options must be formatted the same way
as the value of the egr.eai.http.ofml_extensions start-up file entry (§4.1.14), except that
there must be no leading PLUS SIGN. If one of these options contains an extension that is not part
of the default set of extensions served by the OFML HTTP server, then the afore mentioned start-up
file entry should be used to configure the OFML HTTP server to serve files with this extension, or
HTTP requests for these files will result in a 404 (Not Found) HTTP error.

In case of the IGXC and GFJ export, the default value for option geometryExtensions is .obj.
The default list of image extensions for GFJ export consists of .jpg and .png, in that order.

If the IGXC/GFJ export needs a geometry, it first attempts to find a geometry file within the OFML
data, using the specified geometry extension list to select and prioritize geometry formats. If no such
file can be found, the export generates the required geometry. If the first extension from the exten-
sion list is .glb or .gltf, the export will generate GLB or GLTF geometries, respectively. Otherwise, it
will generate OBJ geometries.

hierarchyMode=enum:Hierarchy|MatrixStack|MaterialStack|Flat|Path|Children

Formats: GFX, FBX (only supports Hierarchy|Flat)

Flat

No hierarchy, i.e. all (geometric) primitives are on the same level.

Hierarchy

Writes the OFML object hierarchy, but materials and transforms are still assigned to primit-
ives (leave nodes) only.

MatrixStack

Writes the OFML object hierarchy, transforms are assigned to top objects (inner nodes), if
possible. Materials are assigned to primitives (leave nodes).

MaterialStack

Like MatrixStack, but materials are assigned to top objects too.

Formats: IGXC

Path (default)

If set to Path, the geometry objects are exported as an array of JSON objects. Each object
has a key named "Path" and a value of type string. The string can be used to rebuild the ob-
ject hierarchy.

Children

If set to Children, the geometry objects are exported as a tree of JSON objects. Each in-
ner node object of the tree has a key named "Children", whose value is an array of child
objects.

obx.enabled=boolean:false

Formats: GFX

If set to true, the export produces a ZIP file that contains the GFX file as geometry.gfx.
<eoxObject/> elements that represent the root of the hierarchy of geometries for an article have
the attribute comInfo. The value of the comInfo attribute is a relative URI that is to be resolved
against the URI for geometry.gfx. The scheme specific part of the resulting URI identifies an OBX
file, and the fragment (remaining characters after the number sign (#)) the article item within the OBX
file through its item identifier.

At present, the OBX file is always named 1.obx, but future versions of the Online Configurator may

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 232 of 298

EAIWS 4.16

use another name, or even multiple files. Therefore the name of the OBX file must always be taken
from the value of the comInfo attribute.

obx.encoding=string:UTF-8

Formats: GFX

This option allows the specification of the character set to be used when the OBX file is written.

scale=float:1.0

Formats: 3DS, DWG, SKP, FBX, OBJ, DAE

Scale the output geometry by the given factor.

duplicateFaces=boolean:false

Formats: 3DS, FBX, DAE

For each face (triangle), write another face with the same vertices but reverse orientation. Useful, if
you want to feed the output to applications, which do not handle oriented faces correctly.

empty=boolean:true

Formats: 3DS

Generate one face for empty meshes. Useful, if output is to be fed to applications which can not
handle empty meshes (this includes 3DStudio(Max) itself, at least for some versions).

use3DProxies=boolean:true

Formats: DWG

If true, DWGs from the data packages (“Proxy DWGs”) are directly included in the output. If false,
imported DWGs are tessellated to polygon meshes.

This option should be set to false if output is to be fed to applications which do not handle ACIS
primitives. It should be set to true if output is to be fed to AutoCAD, since AutoCAD R17 and above
have problems rendering polygon meshes.

textures=boolean

Formats: 3DS, DWG, SKP, FBX, OBJ, DAE

Default:
3DS, SKP, FBX, OBJ, DAE: false
DWG: true

If materials=false or textureToColor=true or acadColorIndex=true the default value
is always false.

This option controls whether the export just exports the geometry (value false), or exports both the
geometry and texture images (value true).

For 3DS, OBJ and DAE if the value of this option is false, the returned URL references a single geo-
metry file. Otherwise, the returned URL references a ZIP file. One entry of the ZIP file is named
geometry.<format>. If the geometry references texture images, these texture images are also
packed into the ZIP file, using the same names as done by the geometry.

If the returned URL references a ZIP file, but the client is unable or unwilling to deal with the ZIP
file87, the client is still able to fetch the individual geometry and image files. To do so, it must strip the
.zip suffix from the returned URL and append /geometry.<format>. This URL can then be used
to fetch the geometry. The client can then analyse the geometry to get the texture image file names,
and, for each image file name, replace geometry.<format> with the name of the texture image to
form an URL that can be used to fetch the texture image.

87 The format of the ZIP file is kept quite simple. Particularly, it uses neither compression nor encryption. There are no extra fields,
comments, or data descriptors, and the crc-32, compressed-size, and uncompressed-size fields of the local file headers are all valid.
Thus it is possible to process the ZIP file in a single pass, as there is no need to read the central directory before the entries can be
reliably extracted.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 233 of 298

EAIWS 4.16

If option textureToColor is true textures are not exported, no matter what the value of the
textures option.

materials=boolean

Formats: DWG, SKP, FBX, OBJ, DAE, IGXC

Default:
DWG, SKP, FBX, DAE: true
OBJ, IGXC: false

If textures=true or textureToColor=true and not acadColorIndex=true the default
value is always true.

If acadColorIndex=true and not textures=true the default value is always false.If
true, export materials, if false export just geometries.

For OBJ a value of true for this option requires the OBJ export to return a ZIP file.

ofmlMaterials=boolean:false

Formats: IGXC

Write materials in OMATS format.

textureToColor=boolean:false

Formats: DWG, SKP, FBX, DAE

If this option is true, average texture colors instead of diffuse colors are exported. Furthermore, tex-
tures are not exported, no matter what the value of the textures option.

acadColorIndex=boolean:false

Formats: DWG

If this option is true, materials will get AutoCAD colors.

staticMaterials=boolean:false

Formats: IGXC

Enable export of static materials only.

shortMaterialNames=boolean:false

Formats: FBX

layers=boolean:false

Formats: IGXC

 Write layer information

no2D=boolean

Formats: DWG, SKP, FBX, DAE, GFJ

Default:
SKP, FBX, DAE, GFJ: true
DWG, PEC: false

If true, do not export 2D geometries, i.e. export 3D only. In case of PEC this option is always
false, so PEC always contains a 2D geometry. It is not possible to turn of the 2D symbol. This is
also the case for the dwg file contained in the PEC export (Option dwg.enabled=true).

no3D=boolean:false

Formats: DWG

If true, do not export 3D geometries, i.e. export 2D only.

layerControl

The argument of this option must be a string that adheres to the following grammar:

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 234 of 298

EAIWS 4.16

 layer-control = [global] { specific }

 global = "*" | "!"

 specific = onoff layer-spec { suffix }

 onoff = "\+" | "-"

 suffix = "r" | "i"

 layer-spec = "'([^']|'')*'" | "\"([^\"]|\"\")*\""

(Character sequences enclosed in double quotes represent terminal symbols specified as POSIX
Extended Regular Expressions, with the addition that \" represents an ordinary double quote charac-
ter that does not terminate the character sequence.)

The layer control string is processed left to right. If global is present, all layers are initially switched
on ('*') or off ('!'). 'layer-spec' is a string whose meaning depends on the possibly empty sequence of
suffixes. If the 'r' suffix is present, it is a POSIX Extended Regular Expression, selecting all layers
whose complete name matches the regular expression. Otherwise it is an ordinary string that must
match a complete layer name. If the 'i' suffix is present, matching is done in a case-insensitive way. It
is not an error if suffixes appear more than once. Selected layers are switched on if onoff is '+', and
off if onoff is '-'.

After the export, layers are switched back to their original state.

layerRules

This option is used to summarize the layers inside the DWGs. The rules which apply for summarizing
can be defined in an xml file, which is saved in the directory ./etc/elayers/. By default EAIWS
has one layer rule file available under ./etc/elayers/color.xml.The value of this option must
be a relative path name to the elayer directory (./etc/elayers).

Formats: DWG

r17=boolean:true

Formats: DWG

If true, export in AutoCAD R17 format, if false, use AutoCAD R16.

dxf=boolean:false

Formats: DWG

If true, export in DXF instead of DWG format.

resolution=enum:Default|Low

Formats: SKP, FBX, DAE

With value Low, the exports export low-resolution geometries, if available in the OFML data.

Low-resolution geometries are stored in geometry files starting with an underscore. Thus, if the name
of the standard geometry file is 'foo.geo', the name of the low-resolution geometry file is '_foo.geo'. If
no low-resolution geometry file is found, the standard geometry is used instead.

This mechanism works for all supported geometry formats as long as the geometry is accessed
through a qualified name (i.e. ::manu::prog::geo_name).

edges=boolean:false

Formats: DAE

Activate edges for DAE export.

annotation=boolean:false

Formats: DWG

If true, export additional geometries to support snapping in pCon.xcad and pCon.planner 6.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 235 of 298

EAIWS 4.16

compression=boolean:false

Formats: all exports that return a ZIP file (GFX, 3DS, OBJ, DAE)

This option is recognized by all geometry exports that may return a ZIP file. These exports return a
ZIP file if some information produced by the export cannot be stored as part of the geometry file (tex-
tures in case of 3DS, textures and materials in case of OBJ, OBX in case of GFX).

If these exports return no ZIP file, the compression option has no effect. Otherwise, if the value of
this option is false, or if the name of the ZIP file entry ends with .jpg, .jpeg or .png, the ZIP file
entry is stored without compression. Otherwise, the ZIP file entry is compressed.

Currently, compression level 4 is used as a test with an OBJ file with one (rather small) texture image
showed this as the greatest level with a marginal benefit (relative reduction in file size divided by the
relative increase in computation time) greater than one.

If the OBJ export returns the URL of a ZIP file, looking like
http://<host>/<path>/<filename>.zip, the files contained in the ZIP file can also be ac-
cessed using an URL where <filename>.zip is replaced by <filename>/<element-name>, with <ele-
ment-name> being geometry.obj, geometry.mtl, or <texture-name>.jpg.

compactJSON=boolean:false

Formats: IGXC

Omit indentations and newlines.

jsonArrays=boolean:false

Formats: IGXC

Write colors and vectors as JSON arrays

crc128=boolean:false

Formats: IGXC

Use CRC128 checksums for geometries. This also enables the use of a global geometry cache for
geometries generated by the export.

basketIds=boolean:false

Formats: IGXC

If true, geometry objects that correspond to a basket article item have a key named "BasketId".
The value is a 36 character long string representing the item ID of the basket article item formatted
as an UUID consisting of only hex digits and minus signs.

Right now this option is ignored if the exported item is not a basket article (i.e. its BasketItemType is
neither Article, Aggregate or PartialPlanning).

skpVersion=enum:SU3|SU4|SU5|SU6|SU7|SU8|SU2013|SU2014|SU2015|SU2016

Controls the version of the exported SKP file. If no version is specified, or the specified version is not
understood by the FAPI converter, the most recent version supported by the SKP SDK will be used.

revit=boolean:false

Formats: GFX

If this option is true, the GFX export will pack the GFX file into a ZIP file (name geometry.gfx).
Furthermore, if the export selects a DWG file as a part geometry, the DWG will be scaled as
necessary and added to the ZIP file. The geometry references within the GFX file will contain
relative URIs that must be resolved relative to the root of the ZIP file.

The option revit=true should probably be used together with option geometryExtensions=.dwg

A client may also modify the ZIP file URL as follows to download the GFX and DWG files:

 1. Strip the suffx (.zip) from the URL.

 2. Append a slash ('/') character.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 236 of 298

EAIWS 4.16

 3. Append the (path) name of the file as used in the ZIP file.

Thus, if the ZIP file URL is

 http://host/.../foo.zip

the URL of the GFX file would be

 http://host/.../foo/geometry.gfx

The same can be done for the DWG files once their (path) names have been extracted from
geometry.gfx.

edwg=boolean:false

Formats: DWG

Right now, the EDWG export is supported for OFML articles (simple and composite) only (i.e. not for
OCD articles or sets of OFML articles).

maxImageSize=integer

Format: GFJ, IGXC, PEC

It controls the maximum size (width/height) of texture images referenced by the GFJ/IGXC/PEC file.
The option’s value must be a non-negative decimal, hexadecimal or octal integer less than 231. A
value of zero disables the option. Values between zero and N are replaced with N (where N is some
arbitrarily chosen small positive integer, currently 16). The default value is zero.

scaleFilter=enum: Legacy|Linear|BiCubic|Lanczos2

Format: PEC

Determines the scale filter to be used if a texture image needs to be rescaled.

omitPriceData=boolean:false

Format: PEC

Controls whether price data should be omitted from document.obx and from OBX snippets embed-
ded in document.dwg (if enabled).

preview.enabled=boolean:false

Format: PEC

Controls whether a preview image should be generated and embedded within the PEC file. The fol-
lowing options are always accepted but ignored unless preview.enabled is true:

• preview.width
• preview.height
• preview.resample
• preview.quality
• preview.ambient
• preview.background
• preview.renderMode
• preview.enableShaders
• preview.fadeBorder
• preview.shadowPlane
• preview.shadowPlane.border
• preview.shadowPlane.color
• preview.shadowPlane.smoothness
• preview.shadowPlane.mirror
• preview.shadowPlane.colorMode
• preview.shadowPlane.mapSize
• preview.shadowPlane.filter
• preview.shadowPlane.maxHeight
• preview.shadowPlane.radius
• preview.shadowPlane.intensity
• preview.shadowPlane.samples

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 237 of 298

EAIWS 4.16

• preview.zoom
• preview.alpha
• preview.beta
• preview.projectionMode

If preview.enabled is true, these options validated after all other options have been processed.
Their allowed values are equal to those of the corresponding image export options with the pre-
view. prefix removed (see basket service operation getGeneratedImage).

camera=<camera-specification>

Format: PEC

Determines the values stored in the <camera/> element of pec.xml.

The camera specification consists of four (perspective) or five (orthographic) fields separated by
colon (:). The values of individual fields must be as follows:

1. perspective or orthographic

2. a three-element array representing the viewpoint

3. a three-element array representing the viewing direction

4. a three-element array representing the up-vector

5. a single number representing half the visible size in y-direction

The vectors representing viewing direction and up-vector don't need to be normalized, but must be
non-zero.

Arrays start with a left square bracket ([), end with a right square bracket (]), and contain numbers
separated by comma (,).

All numbers must adhere to the usual syntax for floating point numbers. Special numbers like NaN
and Inf are not allowed.

Whitespace at the start and end of the camera specification, around field separators, and around
numbers is ignored.

If no camera option is present, but preview.enabled is true, the camera specification is derived
from the camera settings used to generate the preview image. Otherwise, no <camera/> element is
written to pec.xml.

dwg.enabled=boolean

Format: PEC

Controls whether the generated PEC file contains an EDWG file (document.dwg)

compression=integer

Format: PEC

Controls the compression level used for non-texture entries of the PEC file. The specified compres-
sion level must be between 0 and 9, both inclusive, with 0 disabling compression and 9 resulting in
maximal compression. The default value is 6.

The getExportedGeometry operation returns an empty string if the product data does not support export
of geometries, if the Online Configurator has been configured not to export geometries of the selected
format, if the license feature necessary for the selected format could not be leased during start-up of the On-
line Configurator, or if the process of exporting the geometry failed for whatever reason. Otherwise, the oper-
ation returns an URL referencing the exported geometry, or a ZIP file containing the geometry. The URL re-
mains valid until the session is explicitly closed by the closeSession operation of the session service, or is
automatically closed after a configurable time of inactivity (§4.1.6).

The getExportedGeometry operation may be called multiple times for the same article item with different
options. For each set of options a new geometry will be exported. If getExportedGeometry is called suc-
cessively for the same article item with an identical set of options then the geometry will not be re-exported

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 238 of 298

EAIWS 4.16

unless there was an intervening call of the setPropertyValue operation.

A BasketServiceFault is returned if any of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify an article item.
• One of the specified options has an invalid value.
• If textures are enabled and materials are disabled.
• If textures are enabled and texture-to-color are enabled.
• If texture-to-color is enabled and materials are disabled unless acad-color-index is enabled.
• If acad-color-index is enabled and either textures or materials is enabled.

Change behaviour of operations getGeneratedImage and getExportedGeometry of basket service:

If the operation is invoked to get an image or geometry for a set-article item, and the geometry compositor
fails to obtain the geometry for at least one set-article part, the operation terminates with a
BasketServiceFault instead of returning an empty string (as was the case before). The field `partComposi-
tionFailures` of the fault contains information about *all* parts that should have a geometry, but failed to
provide one.

Mechanism that allows HTTP client to control Content-Disposition response header for GET requests
referencing files in the session cache.

Client control of the header Content-Disposition for files in the session cache.

5.6.3.44 getConfigDependentMedia

Synopsis:

ConfigDependentMediaInfo getConfigDependentMedia(SessionId sessionId,
 BItemId itemId,
 string mediaType,
 string filter,
 string preferences)
 throws BasketServiceFault;

5.6.3.45 getAllConfigDependentMedia

Synopsis:

ConfigDependentMediaInfo[] getAllConfigDependentMedia(SessionId sessionId,
 BItemId itemId)
 throws BasketServiceFault;

5.6.3.46 setBasketAppData

Synopsis:

void setBasketAppData(SessionId sessionId, string appKey, string[] data)
 throws BasketServiceFault;

The setBasketAppData operation is used to attach application-specific (or client-specific) data to the bas-
ket. This data can be accessed using the getBasketAppData (§5.6.3.47) operation and is part of the pro-

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 239 of 298

EAIWS 4.16

ject file saved and loaded by the saveSession (§5.4.3.14) and loadSession (§5.4.3.15) operations. For
more information, see §5.3.

A BasketServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• One of the elements of data contains an invalid location path, or the location path is not followed by
an equals sign (=).

5.6.3.47 getBasketAppData

Synopsis:

string*[] getBasketAppData(SessionId sessionId,
 string appKey,
 string[] paths)
 throws BasketServiceFault;

The getBasketAppData operation is used to fetch application-specific (or client-specific) data attached to
the basket which has either been read by the loadSession (§5.4.3.15) operation as part of the project file,
or previously attached to the basket by the setBasketAppData (§5.6.3.46) operation. For more informa-
tion, see §5.3.

A BasketServicFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• One of the elements of data contains an invalid location path.

5.6.3.48 setItemAppData

Synopsis:

void setItemAppData(SessionId sessionId,
 BItemId itemId,
 string appKey,
 string[] data)
 throws BasketServiceFault;

The setItemAppData operation is used to attach application-specific (or client-specific) data to a basket
item. This data can be accessed using the getItemAppData (§5.6.3.49) operation and is part of the project
file saved and loaded by the saveSession (§5.4.3.14) and loadSession (§5.4.3.15) operations. For more
information, see §5.3.

The itemId parameter must identify a basket item that is part of the basket item tree maintained by the bas-
ket service for the session identified by the sessionId parameter.

A BasketServiceFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify a basket item.
• One of the elements of data contains an invalid location path, or the location path is not followed by

an equals sign (=).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 240 of 298

EAIWS 4.16

5.6.3.49 getItemAppData

Synopsis:

string*[] getItemAppData(SessionId sessionId,
 BItemId itemId,
 string appKey,
 string[] paths)
 throws BasketServiceFault;

The getItemAppData operation is used to fetch application-specific (or client-specific) data attached to a
basket item which has either been read by the loadSession (§5.4.3.15) operation as part of the project file,
or previously attached to the basket item by the setItemAppData (§5.6.3.48) operation. For more informa-
tion, see §5.3.

The itemId parameter must identify a basket item that is part of the basket item tree maintained by the bas-
ket service for the session identified by the sessionId parameter.

A BasketServicFault is returned if one of the following conditions occurs:

• The sessionId parameter is not a valid string representation of an UUID or does not represent an
open session.

• The itemId parameter does not represent an UUID.
• The itemId parameter does not identify a basket item.
• One of the elements of data contains an invalid location path.

5.6.3.50 getMultiItemAppData

Synopsis:

ItemAppData[] getMultiItemAppData(SessionId sessionId,
 BItemId itemIds,
 string appKey,
 string[] paths,

 ItemSelectionOptions *options)
 throws BasketServiceFault;

The operation getMultiItemAppData is used to fetch application specific data of multiple basket items
using a single invocation of a web service operation.

The operation determines a set of selected items based on parameters itemIds and options. It then
determines the item app data for each selected item the same way as done by operation getItemAppData
(§5.6.3.49). Finally, it returns a sequence of ItemAppData elements (in unspecified order), where each
element contains the item ID and the application specific data of this item.

5.6.3.51 copy

Synopsis:

string[] copy(SessionId sessionId,
 BItemId[] itemIds,
 OperationMode opMode,
 string uri,
 CopyOptions options)
 throws BasketServiceFault;

The copy operation of the basket web service is used to serialize a sub-set of the basket items to an OBX
stream. The sub-set is defined by the itemIds parameter and flags of the opMode parameter. The OBX
stream is written to a file specified by the uri parameter.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 241 of 298

EAIWS 4.16

The set of items serialized to the OBX stream (the set of selected items) is determined as follows, starting
with the set of items specified by the itemIds parameter (the default value of operation mode flags is
false):

1. The operation fails if the set of selected items contains a planning item (right now, this should not
happen as there is no way to get a planning item into the EAIWS).

2. If the subPositions flag is true in the operation mode, the operation adds all descendants of se-
lected items to the set of selected items unless they are already explicitly or implicitly selected at the
beginning of this step (an item is implicitly selected if it is a sub-article item of a composite article
whose main article is explicitly selected, or part of a set-article whose set-article item is explicitly se-
lected).

3. For each selected set-article item, the operation ensures that all parts are selected too, adding them
to the set of selected items if necessary.

4. If the mainArticles flag is true in the operation mode, the operation ensures that for each sub-
article item contained in the set of selected items, the main article item is selected too, adding it to
the set of selected items if necessary. If the flag is false, all sub-article items are removed from the
set of selected items.

5. For each main article item contained in the set of selected items, the operation ensures that all sub-
article items are contained in the set of selected items, adding them if necessary.

If the uri parameter is empty, the file is created within the session's working directory and the operation re-
turns the URL of the file.

If the uri parameter is not empty, it must represent a file URL for a local file. The OBX stream is saved to
this file unless the configuration of EAIWS does not allow access to the path specified by the URL, the file
can not be created, or the file already exists and the overwrite option has not been specified.

The copy operation of the basket web service fails with a basket service fault if more than one item or com-
posite article is to be copied and the application license feature egr.eai.basket.copy_paste is not en-
abled.

5.6.3.52 paste

Synopsis:

string[] paste(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 string uri,

 PasteOptions options)
 throws BasketServiceFault;

The paste operation of the basket web service is used to de-serialize the items contained in an OBX stream
and insert them into the current basket at the position specified by the fatherId and beforeId paramet-
ers.

In general, OBX streams contain a forest of items. The root items are inserted as children of the parent item
specified by fatherId, or the top folder if fatherId is the NIL ID.

If beforeId is the NIL ID, or if the item specified by beforeId is not a descendant of the parent item, they
are inserted at the end the list of children of the parent item. Otherwise, they are inserted into the list of child
items immediately before the child item which is either the item specified by beforeId, or one of its ancest-
ors.

If the value of the uri parameter must be an URI returned by the copy operation, an URL returned by the
getUploadURL operation of the session service, or a file URL for a local file that can be accessed by
EAIWS (depends on the configuration of EAIWS).

The paste operation of the basket service returns the item IDs of all pasted items.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 242 of 298

EAIWS 4.16

The operation operation paste fails with a basket service fault

• if the BSK/OBX stream contains a set-article and the application license feature
egr.eai.basket.set_articles is not enabled.

• if the number of items in the OBX stream, not counting basket sub-article items, is greater than one
and the license feature egr.eai.server.multiple_positions is not enabled.

• if, after paste, the number of items, not counting the top folder and basket sub-article items, is
greater than one and the license feature egr.eai.server.multiple_positions is not enabled.

5.6.3.53 pasteContainer

Synopsis:

PasteContainerResult pasteContainer(SessionId sessionId,
 BItemId fatherId,
 BItemId beforeId,
 string uri,
 PasteContainerOptions *options)
 throws BasketServiceFault;

struct PasteContainerResult {
 BasketItem[] items;
 string[] originalItemIds;
 string[] itemGeometries;
 string sceneGeometry;
}

Arguments of this operation are similar to the arguments of the paste operation, except that the URI must
reference a PEC file instead of an OBX file.88

The operation imports at least all required resources from the PEC file into the currently loaded project89 and
pastes the contents of the OBX stream contained in the PEC file at the position specified by father-ID and
before-ID. The operation may fail if the PEC file is defective for some reason. It always fails if the PEC file
does not contain an OBX stream.

Return value is an instance of complex type PasteContainerResult. Elements of this type contain the
following elements:

• zero or more <items/> elements of complex type BasketItem

• zero or more <itemGeometries/> elements of type xs:string. Unless option ignore-
ComposableGeometries has been set to true, the number of <itemGeometries/> elements is
always equal to the number of <items/> elements, and the n-th element of both types correspond
to each other.

The value of an <itemGeometries/> element is either an URI or an empty string. URIs are
returned for user article items with an attached geometry and for basket main article items with a
geometry checksum that has a valid mapping to a resource stored in the PEC file. For all other items
the value is an empty string.

No <itemGeometries/> elements are returned if option ignoreComposableGeometries is
true.

• Exactly one <sceneGeometry/> element of type xs:string. The value is an URI if the PEC file
contains a scene geometry and option ignoreComposableGeometries is not true. Otherwise
the value is an empty string.

• If option returnOriginalItemIds is set, PasteContainerResult will contain a list of
<originalItemIds/> elements of type xs:string. The number of these elements is equal to

88 Use of returnOptionalItemIds=true is broken in EAIWS 4.2 Beta 4.
89 The current implementation blindly imports all resources, unless option ignoreComposableGeometries is set to true, in which

case no resources are imported.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 243 of 298

EAIWS 4.16

the number of <items/> elements, and the Nth elements of both lists correspond to each other.

Returned URIs have scheme imp. Operation resolveURIs of the session service may be used to convert
them into URLs.

Note that saving the project will save only those resources that are directly or indirectly referenced by basket
items at the time the project is saved. Thus, GFJs, geometries and textures imported from PEC files and
exclusively used by basket main article items will not be saved.

URIs returned by operation pasteContainer are guaranteed to remain valid until a new project is loaded
by operation loadSession, unless they have been resolved by operation resolveURIs, in which case they
will remain valid until the session is closed.

5.6.3.54 listPricingProcedures

Synopsis:

PricingProcedureDescription[] listPricingProcedures(SessionId sessionId,
 boolean active)
 throws BasketServiceFault;

List pricing procedures (calculation schemes). If active is false, lists the pricing procedures con-
figured for the Online Configurator. If active is true, lists the pricing procedures added to the cur-
rent basket.

5.6.3.55 getPricingProcedure

Synopsis:

PricingProcedure getPricingProcedure(SessionId sessionId,
 boolean active,
 string name)
 throws BasketServiceFault;

Returns the description and lines of the pricing procedure with name name. With those information details
about the pricing procedure definition can be obtained as set in the Online Configurator installation configura-
tion.

5.6.3.56 addPriceCalculation

Synopsis:

void addPriceCalculation(SessionId sessionId,string ppName)
 throws BasketServiceFault;

Adds the price calculation with name name to the current basket. Multiple price calculations can be added.

The operation addPriceCalculation causes a reload of views that use a merge mode other than None.

5.6.3.57 getPriceCalculationSheet

Synopsis:

CalculationSheet* getPriceCalculationSheet(
SessionId ´ sessionId,

 string itemIds,
 GetPriceCalculationSheetOptions options,
 string ppName)
 throws BasketServiceFault;

Returns calculation sheet for all items identified by itemIds and pricing procedure identified by ppName.
Returns null if item does not have a calculation.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 244 of 298

EAIWS 4.16

The document calculation sheet (header calculation) is returned if the itemIds parameter contains exactly
one item ID and this item ID is the NULL-Id (empty string or all bits zero). Otherwise, the set of selected
items is determined based on the specified set of item IDs and the item selection options. If the resulting set
contains exactly one article item, the operation returns the item calculation sheet for this item. Otherwise it
returns a group calculation sheet for all article items contained in the set of selected items. A group calcula-
tion is a calculation that summarizes zero or more item calculations.

In case of set-article items, the returned calculation sheet represents the sum of all set-article parts, multi -
plied with the quantity of the set-article item.

In case of folder items with option subItems set to true, the returned price calculation sheet will represent
the sum of all calculations of article items within the folder, except for article items that are alternative posi-
tions.

If the folder contains a set-article item, then parts of the set-article item also contained in the folder are ig -
nored. If the folder contains a part of a set-article, but not the set-article item itself, then the part of the set-
article is treated like an ordinary article (i.e. the quantity of the set-article item is ignored).

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

The option viewId of ItemSelectionOptions is supported by this operation. If it contains the ID of a
view then the behavior of the operation is changed as follows:

• Item IDs passed with parameter itemIds are interpreted as IDs of items within this view.

• The options parentItems and subItems, if set, affect the selection of additional view items, not
basket items.

• The set of view items is mapped to a set of basket items, replacing each view item with the set of dir-
ectly referenced basket items90.

• Note that folder view items are mapped to basket folder items, but, at least with display mode
Sorted, the content of both folders does not necessarily consist of the same set of article items, so
the use of folder view items may lead to surprising results.

• The values of options wholeComposite and sumUpComposite are set to true if the view uses
merge mode Compact.

• The value of option itemCondAmountPerUnit is set to true for each returned group calculation
that grouped a whole composite article or a set of identical composite articles. The client may expli-
citly set this option to ensure consistent behavior for ordinary articles and partial plannings or ag-
gregates with sub-articles.

5.6.3.58 getPriceCalculationSheets

Synopsis:

ItemCalculationSheet* getPriceCalculationSheets(
SessionId ´ sessionId,

 BItemId[] itemIds,
 GetPriceCalculationSheetOptions options,
 string ppName)
 throws BasketServiceFault;

The operation getPriceCalculationSheets is used to fetch multiple price calculation sheets using a
single web service operation.

The operation determines a set of selected items based on parameters itemIds and options. It then
attempts to get a price calculation sheet for each selected item.

In case of article items the price calculation sheet contains the calculation for this article item only.

90 Indirectly referenced basket items, like sub-article items indirectly referenced by article view items in merge mode Compact, or set-
article parts in case of collapsed set-articles, are not included.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 245 of 298

EAIWS 4.16

Otherwise, the price calculation sheet contains an aggregate calculation for the selected item and all sub-
positions of the selected item.

For each produced price calculation sheet, the operation returns an ItemCalculationSheet element (in
unspecified order), containing the item ID and the price calculation sheet.

The option viewId of ItemSelectionOptions is supported by this operation. If it contains the ID of a
view then the behavior of the operation is changed as follows:

• Item IDs passed with parameter itemIds are interpreted as IDs of items within this view.

• The options parentItems and subItems, if set, affect the selection of additional view items, not
basket items.

• One instance of type ItemCalculation is returned for each selected view item. The id-field con-
tains the item ID of the view item. The calculation is constructed from the item calculations of all dir-
ectly referenced basket items.

• Note that folder view items are mapped to basket folder items, but, at least with display mode
Sorted, the content of both folders does not necessarily consist of the same set of article items. So
calculations returned for folder view items may not contain the result expected based on the view’s
item structure.

• The values of options wholeComposite and sumUpComposite are set to true if the view uses
merge mode Compact.

• The value of option itemCondAmountPerUnit is set to true for each returned group calculation
that grouped a whole composite article or a set of identical composite articles. The client may
explicitly set this option to ensure consistent behavior for ordinary articles and partial plannings or
aggregates with sub-articles.

5.6.3.59 addManualCondition

Synopsis:

int addManualCondition(SessionId sessionId,
 BItemId[] itemIds,
 string ppName,
 string condType,

 ItemSelectionOptions options)
 throws BasketServiceFault;

Add a manual condition to the calculation for the items identified by itemIds and the pricing procedure
identified by ppName. If itemIds is the Null-ID, add a header condition. Returns the counter of the newly ad-
ded condition, or -1 if condition was already added to the calculation.

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

5.6.3.60 removeCondition

Synopsis:

boolean removeCondition(SessionId sessionId,
 BItemId[] itemIds,
 string ppName,
 string condType,
 int counter,

ItemSelectionOptions options)
 throws BasketServiceFault;

Remove the specified condition.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 246 of 298

EAIWS 4.16

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

The operation fails if called for a folder.

5.6.3.61 setConditionAmount

Synopsis:

void setConditionAmount(SessionId sessionId,
 BItemId itemIds,
 string ppName,
 string condType,
 int counter,
 decimal amount,
 string currency,

CondGroupSelectionOptions options)
 throws BasketServiceFault;

Set the amount of the condition. currency must be "%" for conditions with calculation rule Percent, or
(currently) equal to the document currency.

To set the condition amount of a header condition, itemIds must be the Null-ID. The set of selected items is
determined based on the specified set of item IDs and the item selection options. If the resulting set contains
exactly one article item, the operations operate on the corresponding item calculation. Otherwise they oper-
ate on a (temporary) group calculation that aggregates the individual item calculations.

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

The operation fails if:

• an attempt is made to set a value with the wrong sign.

• the new amount is not within these bounds.

• It is called for a folder

• the aggregate condition or its amount are not editable.

5.6.3.62 resetConditionAmount

Synopsis:

void resetConditionAmount(SessionId sessionId,
 BItemId[] itemIds,
 string ppName,
 string condType,
 int counter,

 CondGroupSelectionOptions options)
 throws BasketServiceFault;

Resets the condition amount to the initial value (before edited by setConditionAmount).

To reset the condition amount of a header condition, itemIds must be the Null-ID. The set of selected items
is determined based on the specified set of item IDs and the item selection options. If the resulting set con-
tains exactly one article item, the operations operate on the corresponding item calculation. Otherwise they
operate on a (temporary) group calculation that aggregates the individual item calculations.

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

The operation fails if called for a folder.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 247 of 298

EAIWS 4.16

5.6.3.63 setQuantityRelation

Synopsis:

void setQuantityRelation(SessionId sessionId,
 BItemId[] itemIds,
 string ppName,
 string condType,
 int counter,
 decimal quantity,
 string unit,

 ItemSelectionOptions options)
 throws BasketServiceFault;

Sets the quantity relation for a calculation line (e.g. by piece).

It fails if the new value is either negative or zero or if called for a folder.

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

5.6.3.64 resetQuantityRelation

Synopsis:

void resetQuantityRelation(SessionId sessionId,
 BItemId[] itemIds,
 string ppName,
 string condType,
 int counter,

 ItemSelectionOptions options)
 throws BasketServiceFault;

Resets the quantity relation of a condition to the initial quantity relation (before edited by setQuantityRela-
tion).

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.
counter may be -1 if the calculation contains only one condition of the given type.

The operation fails if called for a folder.

5.6.3.65 getConditionTypes

Synopsis:

ConditionType[] getConditionTypes(SessionId sessionId,
 boolean active,
 string ppName,
 string[] names)
 throws BasketServiceFault;

Returns either all or a specified subset of the conditions of the specified pricing procedure.

The ppName argument may be an empty string if only one pricing procedure has been added to the basket.

5.6.3.66 listTaxSchemes

Synopsis:

TaxSchemeDescription[] listTaxSchemes(SessionId sessionId,
 boolean active,
 string country)
 throws BasketServiceFault;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 248 of 298

EAIWS 4.16

Lists short information (symbolic identifier, country and region, and, optional, description of variant) about
available tax schemes.

The parameter country may be used to restrict the list of returned tax schemes to those for the specified
ISO country code. In case of an empty string, all tax schemes are returned.

The parameter active is used to select between the default set of tax schemes (false), as available after
a new project has been created, or the set of tax schemes available in the current project true. The latter
set consists of the first one plus the tax scheme loaded as part of the project file. If the default set of tax
schemes contains a scheme with the same identifier as the project tax scheme, this scheme is hidden by the
project tax scheme.

5.6.3.67 getTaxScheme

Synopsis:

TaxScheme getTaxScheme(SessionId sessionId,
 boolean active,
 string schemeId)
 throws BasketServiceFault;

getTaxScheme returns detailed information about the tax scheme specified by the schemeId parameter.

In addition to the short information returned by listTaxSchemes, this operation returns the currency re-
quired by the tax scheme (or an empty string if the tax scheme does not require a particular currency), the
tax types (like VAT), and, for each type, the tax categories (like standard_rate in case of VAT) and the tax
rate.

The value of attribute rateUnit of complex type taxType is either % in case of relative taxes, or
<cy>/<uom>, where <cy> is a currency code and <uom> is an UNECE unit of measure. With the current im-
plementation of pricing procedures, both weight and volume units are meaningful.

The parameter active is used to select between the default set of tax schemes (false), as available after
a new project has been created, or the set of tax schemes available in the current project true. The latter
set consists of the first one plus the tax scheme loaded as part of the project file. If the default set of tax
schemes contains a scheme with the same identifier as the project tax scheme, this scheme is hidden by the
project tax scheme.

5.6.3.68 getCurrentTaxScheme

Synopsis:

string getTaxSchemes(SessionId sessionId)
 throws BasketServiceFault;

The operation getCurrentTaxScheme returns the identifier of the current tax scheme.

5.6.3.69 selectCurrentTaxScheme

Synopsis:

void selectCurrentTaxScheme(SessionId sessionId,
 string schemeId)
 throws BasketServiceFault;

The operation selectCurrentTaxScheme makes the specified tax scheme the current tax scheme.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 249 of 298

EAIWS 4.16

5.6.3.70 getTaxInformation

Synopsis:

TaxInfo[] getTaxInformation(SessionId sessionId,
 BItemId itemId)
 throws BasketServiceFault;

The new operation getTaxInformation returns all known tax information for the specified article item. The
tax information consists of a possibly empty list of pairs of tax type and tax category identifiers (like VAT and
reduced_rate), specifying the tax category to be used by this article for the tax type.

5.6.3.71 setTaxInformation

Synopsis:

void setTaxInformation(SessionId sessionId,
 BItemId itemId,
 string taxType,
 string taxCategory)
 throws BasketServiceFault;

The operation setTaxInformation may be used to set the tax category which is to be used for the given
tax type for the specified article. The article must be an user article. The tax type must be part of the current
tax scheme, and the tax category must be valid for the tax type (according to the tax scheme).

5.6.3.72 resetTaxConfiguration

Synopsis:

void resetTaxConfiguration(SessionId sessionId)
 throws BasketServiceFault;

Reset tax configuration of specified session to same state as after operation openSession. All of the
session’s current tax schemes are discarded, including the project tax scheme (tax scheme possibly loaded
as part of current project from an OBK file), and effectively replaced by all globally configured tax schemes.
Furthermore, the current tax scheme is set according to the session’s current locale.

5.6.3.73 resetTaxScheme

Synopsis:

void resetTaxScheme(SessionId sessionId, string schemeId)
 throws BasketServiceFault;

Reset the specified tax scheme of the specified session to have the same tax types, categories and rates as
the globally configured tax scheme with the same ID.

Nothing happens if the specified scheme ID is equal to the ID of the project tax scheme (tax scheme loaded
as part of current project from an OBK file) and the global tax configuration does not have a tax scheme with
the same ID.

5.6.3.74 setTaxRate

Synopsis:

void setTaxRate(SessionId sessionId,
 string schemeId,
 string typeId,
 string categoryId,
 decimal rate)
 throws BasketServiceFault;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 250 of 298

EAIWS 4.16

For the specified session, sets the tax rate of the specified tax category to the given value in percent.

5.6.3.75 tmGetTable

Synopsis:

TMTable tmGetTable {
string sessionId,
string viewId,
string itemId
}

5.6.3.76 tmGetText

Synopsis:

TMRow[] tmGetText {
string sessionId,
string viewId,
string itemId,
boolean allLanguages,
boolean enableLangTags

}

If called with parameter allLanguages set to false it falls back to the text stored for the undetermined
language if no entry is found for a language from the prioritized list of effective product data languages.

5.6.3.77 tmSetText

Synopsis:

void tmSetText {
string sessionId,
string viewId,
string itemId,
string textId,
string lang,
string text
}

The operation sets the text for the given language tag. In addition, it also sets the text for all language tags
which are proper prefixes of the given one, and removes all texts stored for tags which have the given tag as
a proper prefix. (Does not apply if tmSetText is used to set a product text (short, long, features) of an article
item or the short/long text of a basket folder or text item)

Note: For best interoperability with pCon.basket offline, texts should be set for language tags consisting
solely of an ISO 639-1 (Alpha 2) language code. The last text stored that way will also be stored for the
undetermined language and will be used by EAIWS as a fallback if no entry matching one of the effective
product data languages is found.

However, texts stored for the undetermined language are preserved but otherwise ignored by pCon.basket
offline. If an OBK/OBX file created by EAIWS containing such a text is loaded into pCon.basket offline, the
text of the row gets changed (a text with an Alpha 2 language code is added or changed), and the file is
saved and loaded again in EAIWS, EAIWS will see the new text for the specific language, but will continue to
use the old fallback text.

Similarly, if an OBK/OBX file created by pCon.basket offline contains such texts in one or more languages
(using Alpha 2 language codes), the file is loaded by EAIWS, and the effective list of product data languages
used by EAIWS contains none of these languages, EAIWS will return none of the stored texts (unless
operation tmGetTexts with parameter allLanguages set to true is used).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 251 of 298

EAIWS 4.16

5.6.3.78 tmSetTextVisibility

Synopsis:

void tmSetTextVisibility {
string sessionId,
string viewId,
string itemId,
string textId,
boolean visible

}

5.6.3.79 ResetTaxRate

Synopsis:

void resetTaxRate(SessionId sessionId,
 string schemeId,
 string typeId,
 string categoryId);

For the specified session, resets the tax rate of the specified tax category to it’s default value.

The operation has no effect if the specified scheme ID is equal to the ID of the project tax scheme (tax
scheme possibly loaded as part of current project from an OBK file) and there is no globally configured tax
scheme with the same ID. This is because default values are not stored as part of the OBK file but taken
from the global tax configuration.

5.6.3.80 updateBasketArticles

Synopsis:

UpdateBasketArticleResult[] updateBasketArticles(
SessionId sessionId,

 BItemId[] itemId,
string[] catalogIds,
UpdateBasketArticleOptions options)

 throws BasketServiceFault;

The specified item IDs must reference existing items, but Ids of items other than basket article items are ig-
nored.

The operation determines a set of basket main article items based on the set of specified item IDs and the
wholeComposite attribute of the options argument. If no options are specified, or the wholeComposite
attribute has not been specified, then whole-composite defaults to false. If whole-composite is true, then a
sub-article item specified by one of the item IDs results in the selection of its main article item.

(The attributes subItems and parentItems of complex type ItemSelectionOptions are ignored.)

Once all basket main article items have been determined, the operation determines the update state for each
article item, possibly using the set of specified catalog IDs to restrict the set of OFML catalogs as described
above in the documentation of UpdateState.

If the update state is Updatable, and the effective value of the update option is true, the article is updated.
If the update state is Migratable, and the effective value of the migrate option is true, the article is mi-
grated.

If the article is updated or migrated, and update or migration succeeded, the returned update state for this
article will be UpToDate. If update or migration failed, the returned update state will be Invalid. In all other
cases, the returned update state will be the update state originally determined for this article.

The order of returned elements of complex type UpdateBasketArticleResult is undefined and not
guaranteed to be reproducible (two subsequent calls of updateBasketArticles do not necessarily return

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 252 of 298

EAIWS 4.16

the elements in the same order, even if both update and migrate options are false).

Basically, update and migration mean the instantiation of an OFML article based on the installed OFML
(product) data and the configuration (base article number, variant code, ...) of a basket article item read from
a BSK/OBX file, followed by the transfer of the current article data from the OFML article item to the basket
article item, replacing the old data read from the BSK/OBX file.

In case of an update, the configuration of the article item read from the BSK/OBX file and the configuration of
the OFML article are supposed to be identical. In case of migration, the base article number of the OFML art-
icle should be the same, but other properties may be different.

(Subsequently, the term 'OFML catalog' is used as a synonym for a catalog profile and all OFML packages
referenced from the catalog profile, or for a subset of the OFML packages referenced from a package profile
(If the OFML and commercial manufacturer IDs of all referenced packages as well as the set of manufacturer
display names are identical, the subset consists of all referenced packages. As this is usually the case, a
package profile usually results in a single OFML catalog.))

The support for update and migration results in or affects the following four use cases:

• Update of an article. To update an article, EAIWS must first determine an OFML catalog that con-
tains the article, followed by the re-instantiation of the OFML article, followed by the transfer of the
article data from the OFML article to the basket article item.

In case of multiple registered catalogs that contain different versions and/or distribution regions for
the same article, it may be necessary to specify a subset of catalogs to allow EAIWS the selection of
a single OFML catalog.

• Migration of an article. This is basically the same as the update of an article, except that the configur-
ation of the migrated article is not identical with the original article.

• Determination of the update state. This determines whether a basket article item can be updated or
migrated with respect to a certain set of OFML catalogs.

• Reconfiguration of an article. This is done when a user selects an article, displays the property editor,
and changes a property. The web service operations involved are (at least) 'getArticleData' and 'set-
PropertyValue'. The first operation re-instantiates the OFML article, the second operations sets the
new property value and copies the article data from the OFML article into the basket article item.

For the first operation (re-instantiation of the OFML article) to succeed, the article item must be 'Up-
datable' with respect to all registered OFML catalogs. If this is not the case, it must be updated or mi-
grated first, possibly with a subset of OFML catalogs specified.

5.6.3.81 getReferenceCurrency

Synopsis:

string getReferenceCurrency(SessionId sessionId)
 throws BasketServiceFault;

All exchange rates are defined with respect to the reference currency. If, for instance, the reference currency
is 'EUR', and the exchange rate for 'USD' is 1.4303, then 1 EUR = 1.4303 USD.

5.6.3.82 getExchangeRates

Synopsis:

ExchangeRate[] getExchangeRates(SessionId sessionId,
string[] currencies)

 throws BasketServiceFault;

With the operation getExchangeRates all or a subset of the currently defined exchange rates are access-
ible.

The argument currencies represents zero or more currency codes.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 253 of 298

EAIWS 4.16

If no currency has been specified, the operation returns the exchange rates of all currencies known to the
currency converter.

If at least one currency has been specified, the operation fails with a BasketServiceFault if at least one
currency is not a valid ISO 4217 currency code (excluding pseudo currencies (all currency codes starting
with 'X' except 'XAF', 'XOF', 'XPF' and 'XCF')). The exchange rates are returned in the same order as the
currency codes, one instance of type ExchangeRate for each currency. If one of the currencies is not a
known currency (not known to the currency converter), the attribute rate of the returned exchange rate is
missing.

5.6.3.83 setExchangeRates

void setExchangeRates(SessionId sessionId,
 ExchangeRate[] exchangeRates,

 string? referenceCurrency)
 throws BasketServiceFault;

Operation to set zero or more exchange rates.

For each specified instance of ExchangeRate, the attribute currency must be an ISO 4217 currency code
known to the currency converter, and the attribute rate must be present and specify a number greater than
zero. If the currency is equal to the reference currency, the rate must be 1.0.

If the operation terminates normally, all exchange rates have been updated as specified. Otherwise, if the op-
eration terminates abnormally with a BasketServiceFault, no exchange rates have been modified. Oth-
erwise (abnormal termination with another fault) the behavior is undefined.

If argument referenceCurrency is present and contains a non-empty string, it must be one of the ISO
4217 currency codes returned by operation getExchangeRates. If so, it is set as the new reference cur-
rency, the conversion rate of this new reference currency is set to 1.0, and the conversion rates of all other
currencies are updated to reflect the new reference currency.

New exchange rates specified by parameter exchangeRates will be set after the reference currency has
been changed.

The implementation attempts to make sure that changing reference currency and exchange rates in one op-
eration is atomic.

Note that changing the reference currency, and changing it back to the original reference currency, may res-
ult in slightly different conversion rates due to rounding of (intermediate) exchange rates to at most six signi-
ficant digits.

5.6.3.84 convertToUserArticles

BItemId convertToUserArticles(SessionId sessionId,
BitemId itemIds,

 ItemSelectionOptions options)
 throws BasketServiceFault;

Operation to convert a basket article into an user article.

Determines a set of selected items based on the specified item Ids and optional item selection options. Then,
for each basket main article item with the set, converts the basket article item into a user article item. In case
of composite article items, the main article and each sub-article is converted into an independent user article.

After successful conversion the original basket article items are deleted.

The operation returns a sequence of basket item IDs with the same number of elements as passed to the
itemIds parameter. If the N-th parameter is the ID of a basket article item, then the N-th return value is the
ID of the user article item created for this basket article item. Otherwise, the N-th return value is equal to the
N-th parameter if the item still exists, or the NIL-ID if the item has been deleted for whatever reason (should
not happen).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 254 of 298

EAIWS 4.16

5.6.3.85 getBasketColumns

BasketColumn[] getBasketColumns(SessionId sessionId,
 ColumnId[] columnIds)

 throws BasketServiceFault;

Return information about the basket columns specified by the columnIds parameter. If no column ID has
been specified, then information about all columns configured for the current basket is returned.

All attributes and elements defined for the BasketColumn type are present in the returned basket column
elements.

The operation fails with a BasketServiceFault if

• The session ID, or one of the column IDs, is not a properly formatted UUID.

• The session ID does not reference an existing session.

• One of the column IDs does not reference a column within the basket of the specified session.

5.6.3.86 removeBasketColumns

void removeBasketColumns(SessionId sessionId,
 ColumnId[] columnIds)

 throws BasketServiceFault;

Remove zero or more columns from the basket of the specified session.

The implementation of this operation attempts to make sure, but cannot guarantee, that no change to the
column configuration took place in case of an abnormal termination.

The operation fails with a BasketServiceFault if

• The session ID, or one of the column IDs, is not a properly formatted UUID.

• The session ID does not reference an existing session.

• One of the column IDs does not reference a column within the basket of the specified session.

• One of the specified columns cannot be removed. This is usually because the column is a pre-
defined/built-in column.

5.6.3.87 addBasketColumns

BasketColumn[] addBasketColumns(SessionId sessionId,
 BasketColumn[] columns)

 throws BasketServiceFault;

Add zero or more columns to the basket of the specified session.

The columns, and their initial configuration, are specified by parameter columns.

If the id attribute of a column is an empty string or the NIL UUID, then a random UUID will be generated for
this column.

The type attribute must be specified and must not be Undefined or Builtin.

The itemAttrId attribute should be left unspecified. If specified, it must be UserDefined.

The defaultColumn attribute, if specified, must be either an empty string or a properly formatted UUID. If
not specified or an empty string it will be replaced by the NIL UUID. The NIL UUID is used to indicate that
there is no default column.

The readOnly attribute, if not specified, defaults to false.

The name and title elements must be both present and contain non-empty strings.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 255 of 298

EAIWS 4.16

The defaultValue element, if not present, defaults to an empty string.

It is an error if the defaultColumn attribute contains an UUID other than the NIL UUID, and the default-
Value element contains a non-empty string.

Columns are added, one after another, in the order they appear in the columns parameter. If addition of a
column fails, then all columns added so far by this operation are removed again, and the operation fails.

Possible reasons for the addition of a column to fail are:

• There is already a column with the same ID.

• A non-NIL default column ID has been specified, and there is no column with this ID.

If the operation succeeds, it returns information about all added columns. The number and order of elements
in the return value is the same as in parameter columns. The information returned is the same as would be
returned for the same columns by operation getBasketColumns (§Fehler: Verweis nicht gefun-
den).

The operation fails with a BasketServiceFault if

• The session ID is not a properly formatted UUID.

• The session ID does not reference an existing session.

• For any of the error conditions described above.

5.6.3.88 setBasketColumnProperties

void setBasketColumnProperties(SessionId sessionId,
 BasketColumn[] columns)

 throws BasketServiceFault;

Set properties of zero or more columns of the specified session's basket.

The id attribute of each column must be a properly formatted UUID and must identify an existing column.

The type attribute, if specified, must not be Undefined or Builtin.

The itemAttrId attribute, if specified, must be UserDefined.

The defaultColumn attribute, if specified and non-empty, must be a properly formatted UUID and either
identify an existing column or be the NIL UUID.

Note that a specified, but empty, defaultColumn attribute is not interpreted as the NIL UUID. To reset the
default column, an actual NIL UUID must be specified.

The name and title elements, if present, must be non-empty.

It is an error if the defaultColumn attribute contains an UUID other than the NIL UUID, and the default-
Value element contains a non-empty string.

The implementation of this operation attempts to make sure, but cannot guarantee, that no change to the
column configuration took place in case of an abnormal termination.

Columns are modified, one after another, in the order specified by parameter columns. For each column,
properties are modified as follows, in the given order:

• If the type attribute is specified, then the column type is set to the given value.

• If the name element is present, the column name is set to its value.

• If the title element is present, the column title is set to its value.

• If the readOnly attribute is specified, then the read-only property of the column is adjusted accord-
ingly.

• If the defaultColumn attribute is specified and non-empty, the default column of the current

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 256 of 298

EAIWS 4.16

column is set accordingly. If the attribute contains the NIL UUID, then the default column will be re-
set. Otherwise, the default column is set to the column with the specified ID and the default value of
the column, if any, is reset.

• If the defaultValue element is present (empty or not), the default value of the column will be set
accordingly.

If any of these steps fails for whatever reason, the setBasketColumnProperties operation fails immedi-
ately. No configuration change done so far is undone.

The operation fails with a BasketServiceFault if

• The session ID is not a properly formatted UUID.

• The session ID does not reference an existing session.

• For any of the error conditions described above.

5.6.3.89 getItemFields

ItemField[] getItemFields(SessionId sessionId,
 BitemId[] itemIds,
 ColumnId[] columnIds,
 GetItemFieldsOptions *options)

 throws BasketServiceFault;

Get the values for the fields defined by the intersection of one or more basket columns and a set of selected
basket items (rows)0 of the specified session's basket.

Basket items whose fields are to be returned are selected based on the specified item IDs and the item se-
lection options that may be given with the options parameter. If no item ID is specified, then all currently
existing basket items are selected, including the top folder.

The operation returns field values for the specified columns or, if not columns have been specified, for all
columns found in the session's basket. If a column is specified more than once, then fields of this column
may be returned multiple times.

If a view ID has been specified (field viewId of type ItemSelectionOptions inherited by type
GetItemFieldsOptions), then the item IDs must be view item IDs, the position number will be returned
for the position number column, and images returned for items of views with merge mode Compact will in-
clude sub-articles.

There is no guarantee about the order of returned fields. For each field with a non-empty value, the item ID,
column ID and value are returned.

If one of the column IDs specifies a user-defined column of type Number, and the column references a vari-
able (directly or indirectly through its default value or column), or a default predefined column, then format-
ting of numeric values will be modified so the result adheres to the number syntax specified for column type
Number. Most importantly, this enforces the use of the period (U+002E) as decimal separator, disables the
use of grouping, disables the insertion of units (currency, percent sign, UNECE units of measure) into the
field's value, and disables unit conversion and rounding to specified precision in case of packaging informa-
tion. Furthermore, in case of the TaxRate variable and a valid quantity relation, it causes division of the
amount by the quantity relation (for example, if the condition amount is 3 EUR, and the quantity relation is 2
KGM, then field's value will be 1.5).

The operation fails with a BasketServiceFault if

• The session ID, one of the item IDs, or one of the column IDs is not a properly formatted UUID.

• The session ID does not reference an existing session.

• One of the item IDs does not reference an item currently existing in the session's basket.

• An item ID is specified more than once (optional).

• One of the column IDs does not reference a column within the session's basket.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 257 of 298

EAIWS 4.16

Operation 'getItemFields' properly hande a specified view ID (attribute 'viewId' of complex type 'ItemSelec-
tionOptions' inherited by complex type 'GetItemFieldsOptions'). If a view ID has been specified, then the item
IDs must be view item IDs, the position number will be returned for the position number column, and images
returned for items of views with merge mode 'Compact' will include sub-articles.

5.6.3.90 setItemFields

void setItemFields(SessionId sessionId,
 ItemField[] fields)

 throws BasketServiceFault;

Set the values of zero or more fields identified by column and item ID.

The implementation of this operation attempts to make sure, but cannot guarantee, that no field value has
been changed in case of an abnormal termination of the operation.

The operation fails with a BasketServiceFault if

• The session ID, or one of the column and item IDs is not a properly formatted UUID.

• The session ID does not reference an existing session.

• One of the column IDs does not identify an user-defined column of the session's basket.

• One of the column IDs identifies a read-only column.

• One of the item IDs does not a currently existing item of the session's basket.

• One of the values does not conform to the requirements defined for the corresponding column type.

5.6.3.91 resetItemFields

void resetItemFields(SessionId sessionId,
 BitemId[] itemIds,
 ColumnId columnId,
 string* data,
 ItemSelectionOptions *options)

 throws BasketServiceFault;

Reset the values of fields defined by the intersection of one user-defined basket column and a set of selec-
ted basket items (rows) of the session's basket.

Basket items whose fields are to be reset are selected based on the specified item IDs and the item selection
options that may be given with the options parameter. If no item ID is specified, then all currently existing
basket items are selected, including the top folder.

If the parameter data is not specified, then an empty string will be used instead.

The implementation of this operation attempts to make sure, but cannot guarantee, that no field value has
been changed in case of an abnormal termination of the operation.

The operation fails with a BasketServiceFault if

• The session ID, one of the item IDs, or the column ID is not a properly formatted UUID.

• The session ID does not reference an existing session.

• One of the item IDs does not reference an item currently existing in the session's basket.

• An item ID is specified more than once (optional).

• The column ID does not reference a user-defined column within the session's basket.

• The column ID identifies a read-only column.

• The new value specified with parameter data does not conform to the requirements defined for the
column type (empty strings are always valid).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 258 of 298

EAIWS 4.16

5.6.3.92 OapGetArticleData

Synopsis:

OAPArticleData? oapGetArticleData(SessionId sessionId,
 BitemId itemId)
 throws BasketServiceFault;

Get the OFML Aided Plannning (OAP) article data for the basket article item specified by itemId.

No OAP article data is returned if itemId does not identify a basket article item, no OAP data is available for
the article, for there was some error accessing the OAP data.

The OAP specification should be consulted for detailed information about the returned data.

5.6.3.93 OapGetInteractors

Synopsis:

OAPInteractor[] oapGetInteractors(
SessionId sessionId,
BitemId itemId,
string[] interactorIds
float dpr)

 throws BasketServiceFault;

Get information about currently active interactors. If no interactor IDs are specified, then all of the article’s in-
teractors are considered.

No interactor information is returned if itemId does not identify a basket article item, no OAP data is available
for the article, for there was some error accessing the OAP data.

The OAP specification should be consulted for detailed information about OAP interactors.

Dpr

(default value 1.0).

5.6.3.94 OAPInteractor

Synopsis:

struct OAPInteractor {
 string id;
 OAPSymbolType symbolType;
 OAPSymbolSize symbolSize;
 Vector3? *symbolOffset;
 string[] actionIds;
 string[] directActionIds;
 OAPActionResult[] directActions;
 OAPSymbolDisplay[] symbols;
}

directActionIds

The sequence of action IDs returned by OFML is split into the sequence of direct action IDs and the
sequence of ordinary action IDs. (The direct action IDs are the IDs of actions that are expected to affect the
behavior of the interactor in some way.)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 259 of 298

EAIWS 4.16

directActions

This sequence contains zero or one element of type 'OAPActionResult' for each direct action ID.

5.6.3.95 OAPMessageAction

Synopsis:

OAPMessageAction extends OAPAction {
 string text
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 260 of 298

EAIWS 4.16

5.6.3.96 OAPSymbolType

Synopsis:

enum OAPSymbolType {
PropChange,
PropEdit,
CreateChild,
CreateChildren,
CreateSibling,
CreateSiblings,
DeleteObj,
Transform,
Translate,
Rotate,
RotatePX,
RotateNX,
RotateX180,
RotatePY,
RotateNY,
RotateY180,
RotatePZ,
RotateNZ,
RotateZ180,
Logics,
CheckRules,
Info,
Other,
Add,
Delete,
Edit,
Flip,
MovePlane,
MoveAxis,
MoveDir,
RotateNY90,
RotatePY90,
Material,
ChangeDimHorizontal,
ChangeDim2Left,
ChangeDim2Right,
ChangeDimVertical,
ChangeDimDown,
ChangeDimUp,
PosHorizontal,
Pos2Left,
Pos2Right,
PosVertical,
PosDown,
PosUp,
OnOff,
StartDimChange,
Video,
Attention
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 261 of 298

EAIWS 4.16

5.6.3.97 SymbolSize

Syno

psis:

enum SymbolSize { Small, Medium, Large }

5.6.3.98 OAPSymbolDisplay

Synopsis:

struct OAPSymbolDisplay {
 Vector3 symbolOffset;
 Vector3 *direction;
 Vector3 *orientationX;
 double *viewAngle;
 boolean *HiddenMode;
}

hiddenMode

The default value of this attribute is 'false'.

5.6.3.99 oapProcessActions

Synopsis:

OAPActionResult[] oapProcessActions(SessionId sessionId,
 string[] actionIds,
 boolean exec,
 OAPActionContext context)
 throws BasketServiceFault;

Query for process actions. Depending on parameter exec the operation behaves as follows:

false
Process list of actions and return information up to and including first active action.

true
Process list of actions and return information about inactive and active actions up to and in-
cluding first active action that can not be executed by the server.

context.self must always contain the basket item ID of the article whose actions are to be
queried or executed.

context.interactor must be set to the ID of the interactor if the list of actions has been ob-
tained from an interactor.

context.dpr holds the display pixel ratio. The default value is 1.0. The display pixel ratio is used
to select images returned with actions suitable for the client’s display.

The fields of OAPActionResult are defined as follows:

id
the ID of the action

state
the state of the action; possible values are:

Disabled: The action is disabled. This state may be returned with execution of actions en-
abled or disabled.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 262 of 298

EAIWS 4.16

Enabled: The action is enabled. No attempt has been made to execute the action. This
state may be returned only with execution of actions disabled.

Success: The action was executed successfully. This state may be returned only with exe-
cution of actions enabled.

Failure: Execution of the action failed. This state may be returned only with execution of
actions enabled.

NotResponsible: The server does not feel responsible to execute the action. This may be
because the action must be implemented by the client, or because execution of the
action by the server is not implemented. This state may be returned only with execu-
tion of actions enabled.

An OAPActionResult with state Enabled, Failure or NotResponsible will always be
the last returned action result.

actionData
The OAP action data. No action data is returned if the action state is Disabled. See OAP
specification for more information.

objects
A list of basket item IDs that contains the result of resolution of object definitions contained in
actionData.objects.

addedItems
The basket item IDs of items added during execution of this action.

removedItems
The basket item IDs of items removed during execution of this action.

movedItems
The basket item IDs of items moved during execution of this action. Moved items are items
whose position within the basket item tree has changed.

updatedItems
The basket item IDs of items updated during execution of this action. Updated items are
items whose article data has changed.

referenceObject, newObjectPosition and newObjectRotation

Fields referenceObject, newObjectPosition and newObjectRotation are used in
instances of OAPActionResult holding the result of CreateObj actions with placement
mode AttachAreas. Clients must use these fields to determine the position and rotation of
the newly created object, and adjust its position and rotation accordingly, if all of the following
conditions are met:

◦ Field actionData of the corresponding instance of OAPActionResult contains an
action of type OAPCreateObjectAction.

◦ Field parent of this action is missing.

◦ Field initialPlacement of this action contains a placement of type
OAPAttachAreasPlacement.

referenceObject

This field contains the basket item ID of the reference object.

newObjectPosition

This field contains the position of the origin of the local coordinate system of the
newly created object within the local coordinate system of the reference object.

newObjectRotation

This field contains the rotation of the newly created object relative to its own local

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 263 of 298

EAIWS 4.16

coordinate system. The rotation axis91 runs through the origin of the local coordinate
system. The angle is given in radian with positive magnitudes representing counter-
clockwise rotations92.

The current version of EAIWS will execute the following actions:

CreateObjectAction if the initial placement is of type OAPDataDefinedPlacement, the ap-
plication placement specifies a parent, and the parent resolves to an item of
BasketItemType Aggregate or PartialPlanning.

MethodCallAction if all selected items are OFML article items.

DeleteObjectAction if all selected items are sub-article items of basket composite articles.

TranslateObjectAction and RotateObjectAction if all selected items are OFML article
items.93

The fields of OAPPropEditAction are defined as following:

visibleOnly

editableOnly

If true, these fields restrict the visibility of properties in OAP property editors. If visible
and editable are the property-specific flags reported for individual properties (type
Property), then the property must be visible if and only if the expression

(visible || !visibleOnly) && (editable || !editableOnly)

is true. Or, perhaps more intuitive, they must be hidden if

(visibleOnly && !visible) || (editableOnly && !editable)

is false.

5.6.3.100 OapGetActionData

Synopsis:

OAPAction[] oapGetActionData(SessionId sessionId,
 BitemId itemId,

 string[] actionIds,
 float? dpr

 string? interactor
)

 throws BasketServiceFault;
dpr

(display pixel ratio). The default value is 1.0. The display pixel ratio is used to select images returned with
actions suitable for the client’s display.

interactor

ID of the interactor that triggered an action

91 The euclidean norm of the rotation axis is one unless the angle is zero, in which case it is zero.
92 The current implementation returns angles with magnitudes ranging from 0 to 2π. Nevertheless, clients should at least support

angles with magnitudes ranging from 2π to -π.
93 The semantics of these actions is not well defined right now. The current implementation treats translations as extrinsic (along the

axes of the coordinate system of the parent) and rotations as intrinsic (around the axes of the local coordinate system). Rotations are
converted to up to three elementary rotations around y, x and y. Translation and rotation along/around disabled axes is disabled, and
rules are evaluated. Future implementations will probably ignore disabled translation and rotation axes and will not evaluate rules.
Translations will probably be intrinsic, or there will be a parameter to select between extrinsic and intrinsic translations.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 264 of 298

EAIWS 4.16

5.6.3.101 OapSetClientCapabilities

Synopsis:

void oapSetClientCapabilities(SessionId sessionId,
OAPClientCapability[] capabilities)

throws BasketServiceFault;

This operation is used to inform the server about the set of OAP client capabilities supported by the calling
client. See description of enumeration type OAPClientCapability (§ 5.6.1.106) for more information. The
default set of client-supported OAP capabilities is empty.

5.6.3.102 GetBasketConfig

Synopsis:

BasketConfig getBasketConfig(SessionId sessionId)
 throws BasketServiceFault;

typedef string ViewId;
typedef string ColumnId;

5.6.3.103 changeBasketConfig

void changeBasketConfig(SessionId sessionId, BasketConfig basketConfig)
 throws BasketServiceFault;

This operation can be used to change the basket’s default view or currency94.

To change the default view, the attribute defaultView must be set to the ID of a current view of the basket.
Setting the default view has no immediate effect, but it will be saved as part of the OBK file and applications
that honour this information will use it to select the view initially displayed.

To change the basket’s currency the attribute currency must be set to a valid and supported currency code.

The operation fails without any change to the basket configuration if

A default view ID has been specified that is not a valid UUID or neither the NIL-UUID nor the ID of a current
view of the basket.

A currency has been specified that is not a valid currency code (pseudo currencies are not accepted) or, if it
is a valid currency code, currencies are not editable or the currency is not supported by the basket’s currency
converter.

5.6.3.104 getBasketViewConfigs

BasketViewConfig[] getBasketViewConfigs(SessionId sessionId,
 ViewId[] viewIds)

 throws BasketServiceFault;

getBasketViewConfig is used to query the configurations of all views of the current basket, or a subset of
the view configurations.

5.6.3.105 changeBasketViewConfig

void changeBasketViewConfig(SessionId sessionId,
 BasketViewConfig viewConfig)
 throws BasketServiceFault;

94 The currency can also be changed with operation setCurrency.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 265 of 298

EAIWS 4.16

The operation can be used to change all configuration options of a basket view. The only fields of
BasketViewConfig that can obviously not be used to change a view configuration are viewId,
removable and editable.

The field viewId must be present and contain the ID of an existing editable view. Fields removable and
editable, if present, are ignored.

The view will always be reloaded (i.e. reconstructed from the basket item tree) if the operation effectively
changes the display mode, an expand mode, the merge mode or the set-article mode, whether or not this
change or changes would affect the structure of the current view.

The operation fails if

no valid view ID has been specified (invalid UUID or non-existent view)

the view is not editable

the specified display mode is Undefined

the specification of visible columns is invalid (invalid UUID, non-existent column, duplicate columns)

• the specified column widths are invalid (column ID does not specify visible column, column width
less than or equal to zero, duplicate column widths)

5.6.3.106 setItemConditionDescription

Synopsis:

void setItemConditionDescription(
string sessionId,
string[] itemIds,
string ppName,
string condType,
int counter,
string lang,
string description,
ItemSelectionOptions options

)

5.6.3.107 addBasketView

BasketViewConfig addBasketView(SessionId sessionId,
 BasketViewConfig template)

 throws BasketServiceFault;

The operation is used to add a new view to the basket. The basket view configuration passed as the
template parameter contains the configuration options to be used for this view. The following default
values are used for options that are not explicitly specified:

viewId randomly generated UUID

displayMode Planning

expandGroups true

expandPlanningFolders true

expandBasketFolders false

expandPartialPlannings false

expandAggregates false

mergeMode None

autoColumnWidth true

hiddenDiscounts false

setArticleMode Expand

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 266 of 298

EAIWS 4.16

name must be specified and must not be empty

visibleColumns the list of standard columns (position number, manufacturer,
series, article number, description, quantity, single net price,
total net price)

columnWidths empty

The operation returns the complete configuration of the newly added view.

The operation fails if

◦ No non-empty name has been specified.

◦ no valid view ID has been specified (invalid UUID or ID of already existent view)

◦ the specified display mode is Undefined

◦ the specification of visible columns is invalid (invalid UUID, non-existent column, duplicate
columns)

◦ the specified column widths are invalid (column ID does not specify visible column, column width
less than or equal to zero, duplicate column widths)

5.6.3.108 startOFMLDebugging

void startOFMLDebugging(
string sessionId,
string[] debugModes,
int traceLevel,
int detailLevel,
string outputDevice,
string[] debugClasses

)

debugModes

A list of zero or more of the following: Semantics (semantic errors), Collision (detected collisions),
TableErr (errors reported by oiTable()), ExplWarn (explicit warnings), Func (function trace), Func2
(utility function trace), Warn (warnings), Info (further information), Time (time (in seconds) used by
function), Time2 (start and end time of function), and Progress (reports calls to
xOiSendProgressEvent2App()).

traceLevel

Function trace level (depth), must be non-negative

detailLevel

Detail level must be greater than zero

outputDevice

Either log or file (log if empty or missing).

If set to log, messages appear as NOTICE in application log file and, if configured, in session log
(but note that the default size of the session log is probably insufficient to hold all the debug
messages generated by operations like insertOFMLArticle or setPropertyValue).

If set to file, messages are appended to file debug.out in the current working directory (which should
be the same directory as the current directory of EAIWS when it was started). If the file can't be
opened for writing, messages are written to stderr, potentially interfering with the communication
between FApi-Shell and EAIWS. Thus a client should use file if and only if it knows that FApi-Shells
have permission to create a file in their current directory, or to write to the file if it already exists (and
that the client has permission to read the file).

Furthermore, for EAIWS to accept file the application property egr.eai.gf.cobra.enable_file_io must
be set to true.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 267 of 298

EAIWS 4.16

debugClasses

The list of class names for which to produce debug messages. Unless the list is empty debug
messages are limited to classes whose name is given in this list.

Class names must adhere to the syntax for OFML identifiers.

5.6.3.109 stopOFMLDebugging

void stopOFMLDebugging(
string sessionId

)

5.6.3.110 removeBasketViews

void removeBasketView(SessionId sessionId, ViewId[] viewIds)
 throws BasketServiceFault;

The parameter viewIds must specify zero or more IDs of views of the basket. All specified views will be re-
moved.

The operation fails, not removing any view, if at least one of the specified views is not removable.

5.6.4 Image Generation

5.6.4.1 Differences Between Online Configurator and pCon.basket

The handling of generated article images differs between Online Configurator and pCon.basket.

The client of the Online Configurator generates an article image invoking the getGeneratedImage opera-
tion (§5.6.3.40) for a particular article item, specifying (implicitly or explicitly) the desired rendering and cam-
era settings as well as a tag. The Online Configurator computes an image identifier based on the current
configuration of the article item and the specified settings. It then asks the global file cache (§4.1.16) whether
it contains an image matching this identifier. If so, the image is used. Otherwise, an image is generated and
stored in the cache. In either case, the article item stores a reference to the image under the tag specified by
the getGeneratedImage operation. Consequently, there may be multiple images per article item, and dif-
ferent article items representing the same article configuration may reference different images, even under
the same tag.

pCon.basket, on the other hand, maintains a per-project mapping from article configurations to generated
article images. Whenever a generated image is needed for a particular article item, the article’s current con-
figuration is looked up in this mapping, and if found, the referenced image is used as the generated article
image for this item. If not found, an image is generated using user defined global rendering and camera set-
tings, the image is stored in the global mapping, and used as the generated article image for the item. Con-
sequently, there is only one generated image per article item, generated on demand, and all article items
containing the same configuration of the same article share the same image.

For compatibility with pCon.basket, the Online Configurator also supports the per-project mapping from art-
icle configurations to article images. Images stored in this mapping shall be called PBK images. The map-
ping is updated by the getGeneratedImage operation whenever an image is generated using the
default tag. The mapping as well as the images referenced by the mapping are stored by the
saveSession operation (§5.4.3.14) of the session web service, and restored by the loadSession opera-
tion (§5.4.3.15). A position’s PBK image, if known, is returned by the getImages operation (§5.6.3.42) using
an empty string as tag.

Other than pCon.basket, the saveSession operation of the Online Configurator’s session web service does
not attempt to generate any missing PBK images.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 268 of 298

EAIWS 4.16

5.6.4.2 Client control of the header Content-Disposition for files in the session cache

Added mechanism to HTTP server that allows HTTP client to control Content-Disposition response
header for GET requests referencing files in the session cache.

To add a Content-Disposition response header, the client must pass a URL with a query component
that contains a contentDisposition parameter and an optional filename parameter. The value of the
contentDisposition parameter must be either inline or attachment.

The filename parameter is ignored if its value contains a C0 (U+0000 to U+001F) or C1 (U+0080 to
U+009F) control character, DELETE (U+007F), or a forward (U+002F) or backward (U+005C) slash. All other
characters are allowed, even if they result in an invalid filename on the client system.

 Furthermore, for the filename not to be ignored, both the filename specified by the filename query para-
meter and the actual filename must have an extension, and both extensions must be equal, or the mapping
to a content type must produce the same result, which in turn must be different from application/octet-
stream.

The mechanism is intended for use with URLs returned by operations getGeneratedImage and
getExportedGeometry of the basket web service. The behavior (whether or not a Content-
Disposition response header is produced) is undefined if it is used with other URLs.

The contentDisposition and filename query parameters must be encoded according to
application/x-www-form-urlencoded as specified in Section 5.2, application/x-www-form-urlencoded
serializing, of the WHATWG URL specification.

The filename parameter of the Content-Disposition response header field is encoded according to
RFC 6266. filename= is used for filenames consisting entirely of code points less than U+0100,
filename*= for all other filenames. UTF-8 is used as the encoding for filename*=.

5.7 Project Service

5.7.1 Type Definitions

Price lists, number schemes and project groups are identified by symbolic names. Identifiers for price lists
and number schemes must be valid Unicode identifiers. Identifiers for project groups must be one or more
non-empty sequences of upper-case ASCII letters and digits, starting with a letter, separated by colon.

A user role is a non-empty string that does not start or end with white space.

A number scheme pattern is a non-empty string that does not start or end with white space and contains ex-
actly one %<width>n placeholder and at most one %<width>y placeholder. <width> is a sequence of one or
more decimal digits interpreted as a decimal number that must be greater than zero and less than 100.

The current year is maintained by EAIWS (it cannot be set with operation updateProjectNumberScheme).
The zone ID is used to convert the current time (in UTC) into a date and time in the given time zone to de-
termine the current year. When the number scheme is used to create a new project number and the current
year stored in the number scheme is uninitialized or less than the year derived from the current time scheme
is set to the minimum value before the project number is generated.

Project group permissions consist of a user role and flags for create, read, write, delete and list rights:

create: the user is allowed to create a project in the group
read: the user is allowed to read (open) projects in the group
write: the user is allowed to write (save) projects in the group
delete: the user is allowed to delete projects in the group
list: the user is allowed to list all projects in the group

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 269 of 298

https://url.spec.whatwg.org/

EAIWS 4.16

Language tag maps represent mappings from language tags (subset of IETF language tags consisting of
language, script and region) to non-empty display names. They must have at least one entry for the undeter-
mined language ('und').

5.7.1.1 ProjectData

Synopsis:

struct ProjectData {
 string uri;
 string projectName;
 string projectNumber;
 string description;
 string externalReferenceNumber;
 string externalReferenceText;
 string customerNumber;
 string externalCustomerId;
 string customerRelatedRemarks;
 string company;
 string generalAgreementNumber;
 string keywords;
 AddressData[] addresses;
 string projectGroup;
 string projectId;
 int projectVersion;
 string priceList;
 ProjectState projectState;
 dateTime created;
 dateTime lastModified;
 date projectDate;
 date validToDate;
 string createdByUser;
 string modifiedByUser;
 boolean changed;
 boolean locked;
 string lockHolder;
 dateTime lockTime;
 boolean projectNumberEditable;
 ProjectText[] projectTexts;
 string[] languages;

}

projectState

Project state

created

date and time the project has been created

lastModified

date and time the project has been created

keywords

A single Keyword must consist of a non-empty sequence of Unicode code points belonging to charac-
ter classes LETTER, MARK, NUMBER, SYMBOL, PUNCTUATION_CONNECTOR (e.g. '_') or PUNC-
TUATION_DASH (e.g. '-'). When keywords are set, leading and trailing white-space is allowed but will
be removed. Embedded white-space and sequences of embedded white-space are replaced by a
single space character (U+0020).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 270 of 298

EAIWS 4.16

uri

Allow the URI of the current project to be explicitly set. If not set, or set to null, the path of the project
file (OBK file) will be used to construct the URI.

Operations loadSession and saveSession of the session service set the URI the the URL (file, http, ht-
tps) used to load or save the session. Similarly, operations loadProject and saveProject set the URI to
the URI used by the project database (scheme 'pst').

projectDate

Each project has a project date. The initial project date is derived from the project's create date.

locked

Present in return value of operation 'getProjectData'; Note that the value 'true' means that the active/
loaded project held the lock at some time during the execution of operation 'getProjectData'. At the
time the client sees the value 'true' the lock may already have been stolen by someone else.

lockHolder

May be present in return value of operation 'listProjects'; The attribute is present if somebody holds
the lock or this project. The attribute value represents the user associated with the session at the
time the lock was acquired (the name may be empty if no user had been authenticated).

lockTime

May be present in return value of operation 'listProjects'; The attribute is present if somebody holds the
lock for this project. The attribute value represents the time the lock was acquired.

Contains attributes 'lockHolder' and 'lockTime' now if somebody holds the lock for the current session's
project.

optional attributes 'projectGroup', 'projectId' and 'projectVersion' to return the project group, ID (an
UUID) and version of a project.

Changed: Contains the project's change state (i.e. if true, the project has changed since the last load
or save).

projectNumberEditable

The attribute is always present in return value of operations 'getProjectData' and 'listProjects'. It is ig-
nored in input parameter of operation 'setProjectData' (the reason the attribute is optional).

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 271 of 298

EAIWS 4.16

projectTexts

If the element is present, it contains a sequence of projectText elements of type ProjectText.

languages

Containing zero or more `language` elements of type string. The value of each `language` element
must be an IETF BCP47 language tag (subtags other than language, script and region are ignored)

5.7.1.2 ProjectState

Synopsis:

enum ProjectState {
Undefined,
InProgress,
Offered,
Ordered,
NotCommissioned,
ApprovalRequired,
WaitingForApproval,
ApprovalDenied,
Approved

}

5.7.1.3 ProjectTextType

Synopsis:

enum ProjectTextType {
 HeaderText,

FooterText
}

5.7.1.4 AddressData

Synopsis:

struct AddressData {
string addressNumber;
string addressId;
string title;
string name1;
string name2;
string name3;
string name4;
string street;
string street2;
string countryCode;
string postalCode;
string location;
string district;
string regionCode;
string poBox;
string taxCode;
string taxCodeEU;
string taxCodeUSA;
CommAddress[] commAddresses;
ContactData[] contacts;
AddressType addressType;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 272 of 298

EAIWS 4.16

}

The format of postalCode and poBoxPostalCode follows the OEX (OFML Business Data Exchange)
Global specification:

Maximum Length: 10 characters

Allowed Characters: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ space and – within. Whereas it
is not permitted for several spaces/hyphens to follow one another.

5.7.1.5 CommAddress

Synopsis:

struct CommAddress {
CommAddrType type;
ScopeInfo scope;

}

5.7.1.6 ContactData

Synopsis:

struct ContactData {
string contactNumber;
string title;
string firstName;
string lastName;
CommAddress[] commAddress;
int id;
ContactType contactType;

}

5.7.1.7 AutoSaveOptions

Synopsis:

struct AutoSaveOptions (
boolean onSessionClose,
boolean onProjectClose,
boolean periodical,
duration interval,
duration idleTime

)

onSessionClose

If true, automatically save the project when the session is closed (default false)

periodical

If true, periodically save the project (default false)

interval

<iso-8601-duration> the time between two periodical auto-saves (default PT10M, minimum PT1M)

idleTime

<iso-8601-duration> the time a session must have been idle before a periodical auto- save kicks in
(default PT10S, minimum PT2S)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 273 of 298

EAIWS 4.16

onProjectClose

Auto-save the project (The default value is false) Can also be enabled with the startup file option.
From the point of view of the current web service API a project is closed after a new project has been
successfully opened by one of the following operations:

 SessionWebService: loadSession, loadEmptySession
 ProjectWebService: newProject, loadProject

5.7.1.8 CountryData

Synopsis:

struct CountryData (
string displayName
string iso3166Code

)

5.7.1.9 DeleteProjectsOptions

Synopsis:

struct DeleteProjectsOptions (
boolean ignoreVersionNumbers,
boolean failIfNonExistent,
boolean failIfPermissionDenied,
boolean failIfNotLockable,
boolean ignoreLocks

)

5.7.1.10 DisplayName

Synopsis:

struct DisplayName : string (
string language

)

5.7.1.11 FormattedText

Synopsis:

FormattedText extends string (
string language,
TextFormat format
)

Attribute `language` is interpreted as a RFC 5646 language tag, but sub-tags other than language, script and
region are discarded

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 274 of 298

EAIWS 4.16

5.7.1.12 ListCompletionsOptions

Synopsis:

struct ListCompletionsOptions (
string prefix
string projectGroupPattern,
AddressType addressType,
ContactType contactType,
int limit,
ProjectAttribute filterAttribute,
boolean ignoreCase

)

5.7.1.13 ListProjectsOptions

Synopsis:

struct ListProjectsOptions (
string projectURI,
string searchExpression,
ProjectFilter filter,
ProjectSortSpec[] orderBy,
AddressType[] resultAddressTypes
string projectGroupPattern,
AddressType addressType,
ContactType contactType,
int offset,
int limit

)

addressType and contactType

If 'addressType' is set, then addresses of all other types are excluded from the full text search, and ad-
dress columns are available for filtering and sorting. Similarly, if 'contactType' is set, contact columns
are available for filtering and sorting. If an address does not have the specified address or contact, the
corresponding fields are undefined.

ResultAddressTypes

Can be used to limit the types of addresses returned for each project found. If no address type is spe-
cified, then addresses of all types are returned.

projectURI

If the URI contains the version parameter, then only the given version is returned. Otherwise all ver-
sions are returned (unless limited by 'offset' and 'limit').

Option 'projectGroupPattern', if specified, must match the URI. Option 'searchExpression' is ignored.
All other options ('filter', 'orderBy', 'offset' and 'limit') can be used as usual.

Full-text search.

To search the project database for a certain combination of search terms, set field 'searchExpression'
of type ListProjectsOptions the the search expression. Fields 'filter' and 'projectGroupPattern' may be
used to filter the search results, 'orderBy' may be used to order the filtered results, and 'offset' and
'limit' may be used to restrict the eturned projects to a chunk of the ordered results.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 275 of 298

EAIWS 4.16

In its simplest form, the search expression consists of a sequence of white-space separated terms.
Each normalized term matches search index entries starting with the same character sequence and
containing at most two additional characters. For a project to be selected, at least one of the search
terms must match an index entry referencing the project.

Furthermore, one or more white-space separated search terms may be enclosed in QUOTATION
MARKs. For a project to match the search expression, for each of the enclosed search terms a match-
ing index entry must be found referencing the project (exact match). If the search expression contains
at least one search term enclosed in quotation marks, simple search terms are ignored (unless pre-
ceded by HYPHEN-MINUS).

Finally, both simple and quoted search terms may be preceded by a HYPHEN-MINUS. Basically,
these 'negative' search terms select a set of projects that is subtracted from the set of projects selec-
ted by the 'positive' search terms. If there are no 'positive' search terms, it is subtracted from the set of
all available projects.

(Note that due to normalization, results for unquoted search terms may be somewhat surprising. For
instance, normalization of LATIN SMALL LETTER SHARP S results in two LATIN SMALL LETTER S.
Thus, 'Straß' matches 'Straße', but 'Stra' does not.)

The exact process of normalization is subject to change. Right now it basically consists of the follow-
ing steps:

 1. convert all PUNCTUATION_DASH to HYPHEN-MINUS
 2. convert all PUNCTUATION_CONNECTOR to LOW LINE
 3. convert APOSTROPHE (punctuation) to ACUTE ACCENT (symbol)
 4. remove all leading and trailing PUNCTUATION except
 PUNCTUATION_CONNECTOR
 5. convert to upper case, then convert to lower case
 6. compatibility decomposition, followed by canonical composition
 (Unicode normalization form NFKC)

5.7.1.14 Permission

Synopsis:

struct Permission (
string? userRole,
boolean create,
boolean read,
boolean write,
boolean delete,
boolean list

)

5.7.1.15 PriceList

Synopsis:

struct PriceList (
string id,
string startup,
boolean availableToCurrentUser
userRole[] userRoles,
DisplayName[] DisplayNames,

)

id

The symbolic name

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 276 of 298

EAIWS 4.16

startup

The basename of the startup file

userRoles

A possibly empty list of user roles that are allowed to use the price list

displayName

A language tag map for the display name of the price list

availableToCurrentUser

Used to indicate whether or not this price list can be used by the current session's user.

5.7.1.16 ProjectFilter

Synopsis:

struct ProjectFilter : ProjectFilterNode (
ProjectFilterNode arguments
ProjectFilterOperator operator,
boolean ignoreCase

)

5.7.1.17 ProjectFilterAttribute

Synopsis:

struct ProjectFilterAttribute : ProjectFilterNode (
ProjectAttribute attribute

)

5.7.1.18 ProjectFilterDateValue

Synopsis:

struct ProjectFilterDateValue extends ProjectFilterValue (date date)

5.7.1.19 ProjectFilterDateTimeValue

Synopsis:

struct ProjectFilterDateTimeValue : ProjectFilterValue (
dateTime value

)

5.7.1.20 ProjectFilterNode

Synopsis:

abstract ProjectFilterNode ()

5.7.1.21 ProjectFilterStateValue

Synopsis:

struct ProjectFilterStateValue : ProjectFilterValue (
ProjectState value

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 277 of 298

EAIWS 4.16

5.7.1.22 ProjectFilterStringValue

Synopsis:

struct ProjectFilterStringValue : ProjectFilterValue (
string value

)

5.7.1.23 ProjectFilterValue

Synopsis:

abstract ProjectFilterValue : ProjectFilterNode ()

5.7.1.24 ProjectGroup

Synopsis:

struct ProjectGroup (
ProjectNumberScheme numberScheme,
Permission currentUserPermissions
string id,
boolean folder,
PriceList[] priceLists,
Permission[] permissions,
DisplayName[] simpleNames,
DisplayName[] fullNames,
DisplayName[] subgroupTitles,
Permission currentUserPermissions,

)

id

The symbolic name

folder

A boolean that indicates whether or not this project group acts as a container for other project groups

numberScheme

An optional element that contains the number scheme used by the project group, if any

priceLists

The list of price lists that may be used with the project group.

permissions

The list of permissions (user roles and their associated access rights) that apply to this group and pro-
jects in this group

simpleNames

A language tag map for the simple name of the project group

fullNames

A language tag map for the full name of the project group. By default, the full name of a project group
that does not have a parent group is equal to the simple name, and the full name of a project group
with a parent group is the concatenation of the full name of the parent group and the simple name of

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 278 of 298

EAIWS 4.16

the group (the exact form of concatenation is defined by the user interface). However, if the map of full
names contains a name for the language currently in use, the UI should use this name as the full
name.

subgroupTitles

A language tag map for the titIf 'addressType' is set, then addresses of all other types are excluded
from the full text search, and address columns are available for filtering and sorting. Similarly, if 'con-
tactType' is set, contact columns are available for filtering and sorting. If an address does not have the
specified address or contact, the corresponding fields are undefined.le used for subgroup selection

currentUserPermissions

Used to return the effective permissions of the current session's user regarding this project group.

5.7.1.25 ProjectNumberScheme

Synopsis:

struct ProjectNumberScheme (
string id,
string pattern,
long minimumValue,
long maximumValue,
long nextValue,
int currentYear,
string zoneId

)

id

The symbolic name

pattern

A template for the project numbers generated by this number scheme

minimumValue

The minimum value used to replace %n in the pattern

maximumValue

The maximum value used to replace %n in the pattern

nextValue

The next value usedIf 'addressType' is set, then addresses of all other types are excluded from the full
text search, and address columns are available for filtering and sorting. Similarly, if 'contactType' is set,
contact columns are available for filtering and sorting. If an address does not have the specified ad-
dress or contact, the corresponding fields are undefined. to replace %n in the pattern

currentYear

The current value used to replace %y in the pattern

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 279 of 298

EAIWS 4.16

zoneId

The time zone ID used to decide when exactly a new starts, nextValue is reset to minimumValue and
currentYear is set to the current year

5.7.1.26 ProjectSortSpec

Synopsis:

struct ProjectSortSpec (
 ProjectAttribute attribute,
 boolean ascending,

boolean undefFirst,
boolean ignoreCase

)

5.7.1.27 ProjectText

Synopsis:

ProjectText (
FormattedText[] texts
ProjectTextType type

)

The array of formatted texts (`texts`) holds (different) translations for the project text type stored in
attribute `type`.

In return values all formatted texts use the same text format, and there are no duplicate language tags
(although there may be duplicate language sub-tags).

If type `ProjectText` is used to set or update project texts, the texts are not required to use the same
format, nor are the language tags required to be distinct (the texts are set in order, so all texts must be
syntactically correct and adhere to the content model, but a later text for the same language tag will
overwrite a previous one)

5.7.1.28 SaveProjectOptions

Synopsis:

struct SaveProjectOptions (
string projectGroup,
string priceList,
boolean noVersionCheck,
boolean autoDelete

)

noVersionCheck

(default value false).

Normally, if a project is loaded from the project store, and saved again, and the version number of the
loaded project is not equal to the version number of the most recent version of the project at the time
the project is saved again, the save operation fails. This may happen because another session saved
a more recent version in the meantime, or because the loaded version was not the most recent ver-
sion when loaded.

If option 'noVersionCheck' is set to true then this version check is disabled and a new version of the
project is saved.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 280 of 298

EAIWS 4.16

autoDelete

If set, the saved version will be automatically deleted the next time the project is saved (default false).

5.7.1.29 SubdivisionData

Synopsis:

struct SubdivisionData (
string iso3166names,
string[] localVariants,
string languageCodes,
string displayName
string category,
string iso3166Code,
string regionCode,
string parentSubdivision

)

category

The subdivision category as defined by ISO 3166-2

iso3166code

The subdivision code as defined by ISO 3166-2

regionCode

The subdivision code with the country prefix removed; This code must be used to set the region code
of addresses

parentSubdivision

The subdivision code of the parent subdivision (or missing if this is a top level subdivision)

languageCodes

non-empty list of language codes as defined by ISO 3166-2 for the subdivision; All codes are alpha-2
codes, except for 'und' (which is used in cases where ISO 3166-2 uses '-' as language code).

Iso3166names

non-empty list of subdivision names as defined by ISO 3166-2. This list contains either one element or
the same number of elements as the list of language codes (if there are different names for at least
two language codes).

LocalVariants

possibly empty list of local variants of the names; If empty than no local variants are defined for this
subdivision. Otherwise the rules are the same as for 'iso3166names'.

DisplayName

A name derived from Unicode CLDR data based on the sessions current locale.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 281 of 298

EAIWS 4.16

5.7.1.30 AddressType

Synopsis:

enum AddressType {
SoldTo,
ShipTo,
BillTo,
Payer,
Carrier,
Supplier,
EndUser,
InstallationCompany,
InstallationLocation,
Branch,
InCharge

}

5.7.1.31 CommAddrType

Synopsis:

enum CommAddrType {
Phone,
Fax,
Mobile,
WWW,
Email

}

5.7.1.32 TextFormat

Synopsis:

enum TextFormat {
None,
IML,
XML,
JSON,
HTML

 }

5.7.1.33 ScopeInfo

Synopsis:

enum ScopeInfo {
Business,
Private

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 282 of 298

EAIWS 4.16

5.7.1.34 ContactType

Synopsis:

enum ContactType {
Sale,
Warehouse,
Installer,
Support,
Employee,
Client

}

5.7.1.35 ProjectAttribute

Synopsis:

enum ProjectAttribute {
CreateTime,
LastModifiedTime,
ProjectState,
ProjectName,
ProjectNumber,
Description,
ExternalReferenceNumber,
ExternalReferenceText,
CustomerNumber,
ExternalCustomerId,
CustomerRelatedRemarks,
Company,
GeneralAgreementNumber,
Keywords,
ProjectDate,
ValidToDate,
CreatedBy,
LastModifiedBy,
AddressNumber,
AddressId,
Title,
Name1,
Name2,
Name3,
Name4,
Street,
Street2,
CountryCode,
PostalCode,
Location,
District,
RegionCode,
PoBox,
TaxCode,
TaxCodeEU,
TaxCodeUSA,
ContactNumber,
ContactTitle,
ContactFirstName,
ContactLastName

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 283 of 298

EAIWS 4.16

Enumeration values 'CreatedBy' and 'LastModifiedBy' allow filtering by user who created a project, or by the
last user who modified a project.

The data type of both new attributes is 'String', i.e. the second operand in comparisons involving these attrib-
utes must be stored in an instance of complex type 'ProjectFilterStringValue'.

The user name of the unauthenticated user is an empty string, not NULL. Thus, looking for projects created
by an unauthenticated user must be done with "created_by = ''" instead of "created_by IS UNDEF" (OCF-
Console syntax).

5.7.1.36 LockingMode

Synopsis:

enum LockingMode {
Default,
NoLock,
TryLock,
Lock,
ForceLock

}

5.7.1.37 ProjectFilterOperator

Synopsis:

enum ProjectFilterOperator {
IsDefined,
IsUndefined,
And,
Or,
Not,
Equal,
NotEqual,
Distinct,
NotDistinct,
Less,
LessEqual,
Greater,
GreaterEqual,
Between,
NotBetween,
Like,
NotLike

}

5.7.1.38 AuthMessageType

Synopsis:

enum AuthMessageType {
SCRAM_SHA_256_first,
SCRAM_SHA_256_final

}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 284 of 298

EAIWS 4.16

5.7.1.39 ProjectState

Synopsis:

enum ProjectState {
Undefined,
InProgress,
Offered,
Ordered,
NotCommissioned,
ApprovalRequired,
WaitingForApproval,
ApprovalDenied,
Approved

}

5.7.2 Faults

Synopsis:

void ProjectServiceFault(
string message

)

5.7.3 Operations

5.7.3.1 saveProject

Synopsis:

string saveProject(SessionId sessionId, SaveProjectOptions options)
 throws ProjectServiceFault;

Operation saveProject fails now if:

The project has not been loaded from the project store and the project store already contains a project with
the same project ID.

The project apparently has been loaded from the project store, but the project has not been found in the
store (should not happen unless the project has been deleted from the store).

The project has been loaded from the project store and the version that has been loaded is not the most re-
cent version of the project. This may happen if the project, when loaded, was not the most recent version, or
meanwhile some other session has saved a more recent version.

5.7.3.2 listProjects

Synopsis:

string listProjects(SessionId sessionId,
 ListProjectsOptions options)
 throws ProjectServiceFault;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 285 of 298

EAIWS 4.16

5.7.3.3 loadProject

Synopsis:

string loadProject(
SessionId sessionId,
string uri,
LockingMode? lockMode,

)
 throws ProjectServiceFault;

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
When invoked with a session context ID, the operation sets the project key of the session context to the key
of the new or loaded project, but never close the session context's old 'current project', regardless of whether
it had been identified by a project key stored in the session context or, in the absence of such a key, was
(and remains) the session's current project.

On the other hand, if these operations are invoked with a session ID, and if the new project can be created or
loaded successfully, then the new project will always become the session's current project, and the old cur-
rent project is always closed, regardless of whether there is a session context referencing this project. If
there is such a session context, operations invoked for this session context will subsequently fail if they re-
quire a valid project until the project key of the session context has been reset or is set to the key of one of
the projects currently held open by the session.

lockMode

The default value of this argument is 'Default'.

5.7.3.4 closeProjects

Synopsis:

void closeProjects(
SessionId sessionId,
UUID[] projectKeys)

throws ProjectServiceFault;

Closes all the projects specified as the (possibly empty) list of project keys.

The operation fails if the list of project keys contains duplicates, contains the key of the session's current pro-
ject, or contains an invalid key (i.e. a key which doesn't match one of the keys of the session's current set of
open projects).

5.7.3.5 getProjectKeys

Synopsis:

UUID[] getProjectKeys(SessionId sessionId)
throws ProjectServiceFault;

Get the non-empty list of all projects currently held open by the session.

The first returned project key is the key of the session's current project (i.e. the key of the project used by
operations invoked with a session ID, or invoked with the ID of a session context whose project key is
unspecified). The order of the remaining project keys, if any, is unspecified.

In theory, the first element may be the NIL-UUID (represented by an empty string). This happens if the
session has no current project, a state which should not be achievable with the current web service API, and
is difficult but not impossible to achieve with the internal API used by plugins.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 286 of 298

EAIWS 4.16

5.7.3.6 setCurrentProject

Synopsis:

void setCurrentProject(SessionId sessionId,
UUID projectKey,
boolean? replaceOnly)

throws ProjectServiceFault;

Set the session's current project to the project specified by the given project key, and close the old current
project unless both projects are the same (instances in memory) or argument replaceOnly has been spe-
cified as true.

Argument projectKey must reference one of the projects currently held open by the session.

Argument replaceOnly, if not specified, defaults to false (i.e. the old current project, if different from the
new one, is not only replaced, but also closed).

5.7.3.7 setProjectData

Synopsis:

void setProjectData(
SessionId sessionId,
ProjectData data

)

5.7.3.8 SetProjectText

void setProjectText(
string sessionId,
ProjectText text,
boolean update

)

The operation setProjectText updates or replaces translations for a single project text type.

If parameter update is false then all translations for the given project text type are removed before new
translations are set.

The operation is atomic. If one of the new project texts uses an unsupported format (None and HTML) or
does not conform to its supposed format, the operation has no effect on the project.

5.7.3.9 addPriceList

Synopsis:

void addPriceList(
string sessionId,
string id,
string startup,
string displayName

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 287 of 298

EAIWS 4.16

5.7.3.10 addProjectGroup

Synopsis:

void addProjectGroup(
string sessionId,
string id,
boolean folder,
string simpleName,
string subgroupTitle

)

5.7.3.11 addProjectNumberScheme

Synopsis:

void addProjectNumberScheme(
string sessionId,
string id,
string pattern,
long minValue,
long maxValue

)

The minimum value must be greater than or equal to zero, the maximum value must be greater than or equal
to the minimum value, and the next value must be between minimum and maximum value (both inclusive). If
no minimum value and/or no maximum value is passed to operation addProjectNumberScheme then the
minimum value defaults to 1 and the maximum value defaults to (2^63)-1.

5.7.3.12 authenticateUser

Synopsis:

string authenticateUser(
string sessionId,
AuthMessageType messageType,
string message

)

5.7.3.13 deleteProjects

Synopsis:

string[] deleteProjects(
string sessionId,
string[] uris,
DeleteProjectsOptions options

)

The deleteProjects operation takes a set of project (version) URIs and options. The URIs must be valid
URIs with scheme pst. They may or may not contain a version parameter. If the version parameter is
present the URI references that particular version (unless option ignoreVersionNumbers is set to true, in
which case all version numbers in URIs are ignored).

If the set of URIs contains an URI without a version parameter, then all URIs referencing a particular version
of the same project are ignored.

If the set of URIs contains an URI without a version parameter, or contains URIs for all versions of the same
project, the whole project is deleted.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 288 of 298

EAIWS 4.16

Deleting a project or project version deletes all database records and all associated OBK files.

The operation behaves atomically. If it fails with an exception than no projects or project versions have been
deleted.

The following options are supported:

ignoreVersionNumbers (default: false) All version numbers in URIs passed to the operation are
ignored. Multiple URIs for the same project but with different version numbers do not cause an error.

failIfNonExistent (default: true) Normally, the operation fails if one of the specified projects or
project versions does not exist. If this option is set to false then requests to delete non-existent projects and
project versions are silently ignored.

failIfPermissionDenied (default: true) Normally, the operation fails if the user authenticated
for the current session does not have permission to delete one of the specified projects or project versions. If
this option is set to false then these projects or project versions are not deleted, but projects and project ver-
sions the user has permission to delete are still deleted.

failIfNotLockable (default: true) Normally, the operation fails if one of the projects to delete, or
one of the projects whose version is to be deleted, is currently ocked. If this option is set to false then these
projects or project versions are not deleted, but projects that are not locked, and project versions whose pro-
ject is not locked, are still deleted.

ignoreLocks (default: false) If this option is set to true then projects and project versions are de-
leted even if they are currently locked.

5.7.3.14 getAddressData

Synopsis:

AddressData[] getAddressData(
string sessionId,
AddressType[] addressTypes
)

5.7.3.15 getContactData

Synopsis:

ContactData[] getContactData(
string sessionId

)

5.7.3.16 getCountries

Synopsis:

CountryData[] getCountries(
string sessionId

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 289 of 298

EAIWS 4.16

5.7.3.17 getCountrySubdivisions

Synopsis:

SubdivisionData[] getCountrySubdivisions(
string sessionId,
string countryCode

)

5.7.3.18 getPriceLists

Synopsis:

PriceList[] getPriceLists(
string sessionId,
string idPattern

)

5.7.3.19 getProjectData

Synopsis:

ProjectData getProjectData(
string sessionId,
TextFormat textFormat

)

If the argument is present, and has a value other than None, the returned instance of ProjectData contains a
possibly empty element projectTexts, containing all project texts converted to the specified format.

Allow use of operation setProjectData of project service to set all project texts.

If the instance of ProjectData contains the element projectTexts, then all current project texts are re-
moved and the specified project texts are set in order of appearance.

The operation is atomic. If one of the new project texts uses an unsupported format (None and HTML) or
does not conform to its supposed format, the operation has no effect on the project.

5.7.3.20 getProjectGroups

Synopsis:

ProjectGroup[] getProjectGroups(
string sessionId,
string idPattern

)

5.7.3.21 getProjectNumberSchemes

Synopsis:

ProjectNumberScheme[] getProjectNumberSchemes(
string sessionId,
string idPattern

)

5.7.3.22 getProjectTexts

Synopsis:

ProjectText[] getProjectTexts(
string sessionId,
ProjectTextType[] textTypes,

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 290 of 298

EAIWS 4.16

TextFormat textFormat
)

The operation returns all available translations for the given project text types converted to the given format.

If textTypes is empty then all known project text types are used instead.

All values of TextFormat are supported except None.

An instance of ProjectText is returned for text types that have at least one translation defined.

5.7.3.23 listCompletions

Synopsis:

string[] listCompletions(
string sessionId,
ListCompletionsOptions options

)

For now this method can only be used to list filter completions, but it will be extended to list completions of
search terms.

5.7.3.24 newProject

Synopsis:

void newProject(
string sessionId,
string projectGroup,
string priceList

)

Instead of a session ID the operation can also be invoked with a session context ID as their first argument
(see also §5.4.3.5). If so, the session ID stored in the session context will be used as the actual session ID.
When invoked with a session context ID, the operation sets the project key of the session context to the key
of the new or loaded project, but never close the session context's old 'current project', regardless of whether
it had been identified by a project key stored in the session context or, in the absence of such a key, was
(and remains) the session's current project.

On the other hand, if these operations are invoked with a session ID, and if the new project can be created or
loaded successfully, then the new project will always become the session's current project, and the old cur-
rent project is always closed, regardless of whether there is a session context referencing this project. If
there is such a session context, operations invoked for this session context will subsequently fail if they re-
quire a valid project until the project key of the session context has been reset or is set to the key of one of
the projects currently held open by the session.

The price list, if specified, must be available for the project group. If not specified, the project group must
either have no associated price list, in which case the project continues to use the session's current configur-
ation, or exactly one price list. If a price list has been determined for use, and the price list specifies a startup
file, then the current session configuration is replaced with the configuration read from the startup file and the
new project will use this configuration. Otherwise (price list specifies no startup file) the new project contin-
ues to use the current session configuration.

Loading a new session configuration and replacing the current project with a new empty project is an atomic
operation (except in case of errors caused by bugs in the implementation).

For a given project group and price list. The operation fails without further action if:

 - The specified project group does not exist
 - No price list has been specified and the project group supports multiple price lists

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 291 of 298

EAIWS 4.16

 - A price list has been specified, but the project group does not have the specified price list
 - The project group has been configured for automatic generation of project numbers and genera-

tion of a new project number fails for whatever reason.

5.7.3.25 removeAddressData

Synopsis:

AddressType[] removeAddressData(
string sessionId,
AddressType[] addressTypes

)

5.7.3.26 removeContactData

Synopsis:

int[] removeContactData(
string sessionId,
AddressType addressType,
int[] contactIds

)

5.7.3.27 removePriceList

Synopsis:

void removePriceList(
string sessionId,
string id

)

5.7.3.28 removeProjectGroup

Synopsis:

void removeProjectGroup(
string sessionId,
string id

)

5.7.3.29 removeProjectNumberScheme

Synopsis:

void removeProjectNumberScheme(
string sessionId,
string id

)

5.7.3.30 setAddressData

Synopsis:

void setAddressData(
string sessionId,
AddressData address

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 292 of 298

EAIWS 4.16

5.7.3.31 setAutoSaveOptions

Synopsis:

AutoSaveOptions setAutoSaveOptions(
string sessionId,
AutoSaveOptions? options

)

Sets auto-save options for projects loaded from and saved to the project store (newly created projects are
not auto-saved until they have been saved for the first time).

Project versions saved by auto-save are marked as such and are automatically deleted the next time the pro-
ject is saved.

Auto-save should usually be configured in the session startup file, but can be changed afterwards on a per-
session basis using the project store method setAutoSaveOptions().

Options: Argument and all the options specified within the options argument are optional. The return value
represents the current set of options (i.e. the previous set of options with the new options, if any, applied).

5.7.3.32 setContactData

Synopsis:

void setContactData(
string sessionId,
ContactData contact

)

5.7.3.33 updatePriceList

Synopsis:

void updatePriceList(
string sessionId,
PriceList priceList

)

5.7.3.34 updateProjectGroup

Synopsis:

void updateProjectGroup(
string sessionId,
ProjectGroup projectGroup

)

Special handling of numberScheme and priceLists by operation updateProjectGroup:

To set/reset the number scheme of a project group, use element <numberScheme> with attribute id set to
the id of the number scheme to use (or to an empty string if the number scheme is to be reset). All other at-
tributes and nested elements are ignored.

Similarly, to set the price lists of a project group, use elements <priceList> with attribute id set to a price
list ID. Again, all other attributes and nested elements are ignored.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 293 of 298

EAIWS 4.16

5.7.3.35 updateProjectLock

Synopsis:

boolean updateProjectLock(
string sessionId,
LockingMode lockMode

)

Used to update the lock of the session's current project. The actual operation and the meaning of the return
values depends on the locking mode:

Default - query the state of the lock, i.e. whether or not the project holds the lock; returns true if the
project holds the lock

NoLock - release the lock if it is held by the project; returns true if the project previously held the lock

TryLock - try to lock the project; returns true if the lock could be acquired (or was already held by
the project), false otherwise

Lock - like TryLock, but fails with an exception instead of returning false

ForceLock - always lock the project, stealing the lock from the current lock holder if necessary

Note that the return value does reflect the state of the lock at some point during the execution of the opera-
tion. In particular, a return value of true in case of *Lock does not necessarily that the project still holds the
lock when the operation returns (someone else may have stolen it in the meantime).

Increased project lock timeout from 5 to 10 minutes, and refresh timeout from 3 to 5 minutes.

5.7.3.36 updateProjectNumberScheme

Synopsis:

void updateProjectNumberScheme(
string sessionId,
ProjectNumberScheme numberScheme

)

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 294 of 298

EAIWS 4.16

6 Statistic Event Manager

With the statistics event manager in EAIWS statistic information can be sent to a HTTP client. The client can
then for example save the events to a database and do statistical evaluations. To configure the client please
see §4.1.28.

Basically, the event manager receives statistics events from the application and simply attempts to feed them
into a bounded blocking queue limited to at most 1024 entries. (The queue actually stores groups of events,
so it may contain more than 1024 events if events are reported in groups, as often happens during property
changes of composite articles).

If the queue fails to accept new events because its capacity has already been reached, the events are dis-
carded, and an error message is eventually logged (after 1000 discarded events or 10 minutes since the last
error message of that kind).

A separate thread takes events from that queue and delivers them to local event queues and the HTTP client
event queue (if configured, see §4.1.28). One of these queues discarding events due to overflow has no ef-
fect on other queues.

The statistics framework defines two (abstract) base classes for events:

Synopsis:

[uuid(d108dd08-1e07-3ca0-9202-615aab9e63df), extensible]
struct StatsEvent
{
 Instant timestamp@1;
}

[uuid(61ca0e23-6f68-3af9-a686-d775b56074e9), extensible]
struct SessionStatsEvent : StatsEvent
{
 UUID sessionId@10;
}

All statistics events must be derived from StatsEvent. All session-specific events should be derived from
SessionStatsEvent.

The statistics framework defines three events related to the management of sessions:

Synopsis:

[uuid(4fd35df3-f9a0-48fd-8da5-70994b2f9985), extensible]
struct SessionOpenEvent : SessionStatsEvent
{
 String localeName@100;
 String zoneId@101;
}

[uuid(e06c9897-699b-4216-9d8f-1a5a5d95eada), extensible]
struct SessionCloseEvent : SessionStatsEvent
{
}

[uuid(3e4df265-391d-491a-98a4-30ec4745ef16), extensible]
struct SessionConfigEvent : SessionStatsEvent
{
 String? localeName@100;
 String? ZoneId@101;

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 295 of 298

EAIWS 4.16

}

Open and close events are emitted whenever a session is opened or closed. Configuration events result
from operation setLocale (§5.4.3.10) of the session web service.

The statistics framework defines five events related to the insertion, deletion and configuration of basket art-
icles.

Synopsis:

[uuid(75b076cf-10b9-3bc8-b441-142f73af878c), extensible]
struct BasketStatsEvent : egr.eai.fw.statistics.SessionStatsEvent
{
}

[uuid(901b332b-c7d6-3c5c-bd0e-b914bb99faed), extensible]
struct BasketArticleEvent : BasketStatsEvent
{
 String manufacturerId@100;
 String seriesId@101;
 String baseArticleNumber@102;
 String distributionRegion@103;
 String finalArticleNumber@104;
 String ofmlVariantCode@105;
 Boolean isSubArticle@106;
}

[uuid(e94a83b6-5cfd-4f00-80cd-0da52752b35a), extensible]
struct InsertArticleEvent : BasketArticleEvent
{
}

[uuid(024ace31-0c50-4acf-908e-3968db66b47f), extensible]
struct DeleteArticleEvent : BasketArticleEvent
{
}

[uuid(f8a453f6-b616-35b2-a41a-ebedc1385009)]
struct PropertyChange
{
 String propertyName@1;
 GDRValue oldValue@2;
 GDRValue newValue@3;
}

[uuid(949ae94c-7358-40ee-835f-d964e1d09e6d), extensible]
struct ConfigArticleEvent : BasketArticleEvent
{
 String? oldManufacturerId@200;
 String? oldSeriesId@201;
 String? oldBaseArticleNumber@202;
 String? oldDistributionRegion@203;
 List<PropertyChange> propertyChanges@204;
}

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 296 of 298

EAIWS 4.16

BasketStatsEvent is the abstract base class of all events emitted by the basket module.

BasketArticleEvent is the abstract base class of all article-related basket events.

Events of type InsertArticleEvent are emitted whenever a new OFML article is inserted by operation
insertOFMLArticle (§5.6.3.16) of the basket web service, as a result of the CreateObject OAP action,
or as a result of a property change (see below).

Events of type DeleteArticleEvent are emitted as a result of a property change.

Events of type ConfigArticleEvent are emitted as a result of a property change.

Property changes are usually triggered by

• operation setPropertyValue (§5.6.3.39) of the basket web service

• operation updateBasketArticles (§5.6.3.80) of the basket web service

• OAP actions PropChange (§5.6.1.105), MethodCall (§5.6.1.139), TranslateObject
(§5.6.1.58), and RotateObject (§5.6.1.57).

Each property change compares the configurations of the main article and the set of sub-articles of the af-
fected composite article before and after the property change. Articles that no longer exist (according to their
item ID) are put in the set of deleted articles, articles that did not exist before are put in the set of inserted art-
icles, and articles that did exist before and still exist, but differ in manufacturer ID, series ID, base article
number, distribution region, final article number, OFMLVarCode, and/or PropVarCode a put in the set of
changed articles.

Changed article items always result in a ConfigArticleEvent. Fields oldManufacturerId, oldSer-
iesId, oldBaseArticleNumber, and oldDistributionRegion are set only if the respective values dif-
fer before and after the property change. If manufacturer ID, series ID and base article number have not
changed, the old and current PropVarCodes are compared and changed properties are stored with their old
and new values in propertyChanges (added or removed property values are not reported).

The sets of inserted and deleted sub-articles are then compared to remove pairs of identical articles which
have been both inserted and deleted. Furthermore, pairs of inserted and deleted articles which are identical
except for their PropVarCode are removed from the sets of inserted and deleted sub-articles but result in a
ConfigArticleEvent (necessary as insert and delete events don't include the PropVarCode). Finally, In-
sertArticleEvent and DeleteArticleEvent are generated for articles remaining in the sets of inser-
ted and deleted articles.

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 297 of 298

EAIWS 4.16

7 SSL Setup

7.1.1 HTTPS Support

Please note: The EAIWS supports only HTTP or HTTPS per domain. Mixed operation is not possible.

The actual HTTPS handling must be performed by an reverse proxy. HTTP is used for communication
between EAIWS and reverse proxy. The reverse proxy has to send the x-forwarded-proto header with the
value of https to the EAIWS.

7.1.2 Soap connection via WSDL

The technologies used for the EAIWS do not allow to change the protocol used in the WSDL at runtime. If
the client has to parse the WSDL, an EAIWS plug-in is required. This plug-in provides all WSDL endpoints
via an alternative URL with corrected links to the actual SOAP service.

The url prefix for this is: /EAIWS/WSDL/

This means that the WSDL must be requested via the plug-in URL /EAIWS/WSDL/EAI/Session?WSDL (in-
stead of /EAI/Session?WSDL).

Please contact EasternGraphics in case the plug-in is required

Copyright © 2011 – 2024 EasternGraphics. All rights reserved.

Page 298 of 298

	1 Prerequisites
	1.1 Operating System
	1.2 Java Runtime Environment
	1.3 Port Mapper

	2 Installation
	3 Licensing
	3.1 Obtaining the Host Name and Host ID
	3.2 Installation of License Files
	3.3 License Features
	3.3.1 Feature egr.eai.server
	3.3.2 Feature egr.eai.server.session
	3.3.3 Feature egr.eai.server.throughput
	3.3.4 Feature egr.eai.dsr.ofml_catalog
	3.3.5 Feature egr.eai.ws.project.ProjectStore
	3.3.6 Further License Features

	3.4 Running the License Server
	3.4.1 Starting the License Server
	3.4.2 Stopping the License Server
	3.4.3 Restarting the License Server

	4 Configuration
	4.1 Server Start-Up File
	4.1.1 Default Locale
	4.1.2 Fixer Compatible web-service
	4.1.3 Known Currencies
	4.1.4 Operations per Minute
	4.1.5 Maximum Number of Concurrent Sessions
	4.1.6 Timeout for Sessions
	4.1.7 Session Suspend
	4.1.8 Allowed File Access
	4.1.9 OFML Debug
	4.1.10 Rotation of Log files
	4.1.11 HTTP Server Options
	4.1.11.1 Port Number
	4.1.11.2 HTTP Server
	4.1.11.3 HTTP Request Executer

	4.1.12 Automatic Generation of Article Images
	4.1.13 3DS Geometry Export
	4.1.14 OFML File Extensions
	4.1.15 HTTP Server Root
	4.1.16 Global File Cache
	4.1.16.1 Maximum Cache Size
	4.1.16.2 Use of Extended Attributes
	4.1.16.3 Transfer Modes

	4.1.17 Java System Properties
	4.1.18 Version Number of License Feature
	4.1.19 Color Space
	4.1.20 Stop-Word Filters
	4.1.21 GZIP-compressed Geometries
	4.1.22 Property References
	4.1.23 OFML catalog cache database
	4.1.24 OFML data cache backend
	4.1.25 FAPI-shell Command Timeout
	4.1.26 Default image options (server start-up file)
	4.1.27 Support for response headers
	4.1.28 Statistics Event Manager
	4.1.28.1 Block Size and Queue Size
	4.1.28.2 HTTP/HTTPS server

	4.2 Session Start-Up File Options
	4.2.1 Allowed File Access
	4.2.2 Unit Format Settings
	4.2.3 Rounding in Basket Service
	4.2.4 Article Number Prefix for Conversion to User Article
	4.2.5 Color Space
	4.2.6 Session Features
	4.2.7 Path Substitution
	4.2.8 Encoding
	4.2.9 Property References
	4.2.10 Session Startup Modification Time
	4.2.11 Currencies
	4.2.12 Timeout for Sessions
	4.2.13 Session Suspend
	4.2.14 FAPI-shell Command Timeout
	4.2.15 Default image options (session start-up file)

	4.3 Command Line Options
	4.3.1 JVM Options
	4.3.1.1 Application Root Directory

	4.3.2 Online Configurator Options
	4.3.2.1 Server Start-Up File
	4.3.2.2 Destination of Log Messages

	4.4 Configuration files
	4.4.1 Media Types

	5 Web Service Interfaces
	5.1 Web Service Definition Syntax
	5.1.1 Types
	5.1.1.1 Primitive Types
	5.1.1.1.1 Boolean Type
	5.1.1.1.2 Integer Type
	5.1.1.1.3 String Type
	5.1.1.1.4 Decimal Type

	5.1.1.2 Defined Types
	5.1.1.2.1 Enumeration Type
	5.1.1.2.2 Structure Type
	5.1.1.2.3 Alias Type

	5.1.1.3 Constructed Types
	5.1.1.3.1 Nillable Type
	5.1.1.3.2 Sequence Type

	5.1.2 Type Definitions
	5.1.2.1 Enumeration Type Definitions
	5.1.2.2 Structure Type Definitions
	5.1.2.3 Alias Type Definitions

	5.1.3 Declarations
	5.1.4 Operations
	5.1.5 Names
	Boolean Values
	5.1.5.1 Integers
	Boolean Values
	5.1.5.2 Integers
	Strings

	5.2 Common Type Definitions
	5.2.1 UUID
	5.2.2 URL

	5.3 Application-Specific Data
	5.3.1 Setting Application Data
	5.3.2 Getting Application Data
	5.3.3 Location Paths
	5.3.3.1 Syntax of Location Paths
	5.3.3.2 Evaluation of Location Paths

	5.4 Session Service
	5.4.1 Type Definitions
	5.4.1.1 SessionId
	5.4.1.2 StringPair
	5.4.1.3 ProjectData
	5.4.1.4 ClientMessage
	5.4.1.5 CustomerData
	5.4.1.6 ProjectSettings
	5.4.1.7 SendMessageStatus
	5.4.1.8 SessionCacheFileType
	5.4.1.9 ImportFileOptions
	5.4.1.10 SaveSessionOptions
	5.4.1.11 OperatingSystemInformation
	5.4.1.12 RuntimeInformation
	5.4.1.13 MemoryUsage
	5.4.1.14 GarbageCollectorInformation
	5.4.1.15 MemoryInformation
	5.4.1.16 ApplicationInformation
	5.4.1.17 SendMessageResult
	5.4.1.18 ServerInformation
	5.4.1.19 SystemInformation
	5.4.1.20 GetItemPropertiesTextMode
	5.4.1.21 GetSystemInformationOptions
	5.4.1.22 LogConfig
	5.4.1.23 LogFilter
	5.4.1.24 LogFilterSpec
	5.4.1.25 LogData
	5.4.1.26 LogRecord
	5.4.1.27 FaultInfo
	5.4.1.28 CallSite
	5.4.1.29 ResolveURIsOptions
	5.4.1.30 ServerResponse
	5.4.1.31 LoadSessionOptions

	5.4.2 Faults
	5.4.2.1 SessionServiceFault

	5.4.3 Operations
	5.4.3.1 hasOpenSession
	5.4.3.2 openSession
	5.4.3.3 closeSession
	5.4.3.4 keepAlive
	5.4.3.5 newSessionContext
	5.4.3.6 disposeSessionContext
	5.4.3.7 getSessionContext
	5.4.3.8 getAllSessionContexts
	5.4.3.9 updateSessionContext
	5.4.3.10 setLocale
	5.4.3.11 getLocale
	5.4.3.12 setSessionProperty
	5.4.3.13 getSessionProperty
	5.4.3.14 saveSession
	5.4.3.15 loadSession
	5.4.3.16 setProjectSettings
	5.4.3.17 getProjectSettings
	5.4.3.18 setProjectAppData
	5.4.3.19 getProjectAppData
	5.4.3.20 getUploadURL
	5.4.3.21 importFile
	5.4.3.22 resolveURIs
	5.4.3.23 getSystemInformation
	5.4.3.24 configureSessionLog
	5.4.3.25 getSessionLog
	5.4.3.26 SendMessage
	5.4.3.27 loadEmptySession

	5.5 Catalog Service
	5.5.1 Type Definitions
	5.5.1.1 ArticleCatalogItem
	5.5.1.2 CatalogImage
	5.5.1.3 CatalogItem
	5.5.1.4 CatalogItemType
	5.5.1.5 CatalogResource
	5.5.1.6 CatalogText
	5.5.1.7 DescriptorType
	5.5.1.8 DisplayMode
	5.5.1.9 DisplayText(Catalog)
	5.5.1.10 GetPackageInfoOptions
	5.5.1.11 ItemCategory
	5.5.1.12 ItemDescriptor
	5.5.1.13 LanguageTag
	5.5.1.14 LookupOptions
	5.5.1.15 MaskedCatalog
	5.5.1.16 MetaPlanningCatalogItem
	5.5.1.17 MethodCallCatalogItem
	5.5.1.18 MethodCallType
	5.5.1.19 PackageCategory
	5.5.1.20 PackageDependency
	5.5.1.21 PackageInfo
	5.5.1.22 PackageType
	5.5.1.23 ScoredCatalogItem
	5.5.1.24 SearchFlag
	5.5.1.25 SeriesType
	5.5.1.26 BasicSearchParameterSet
	5.5.1.27 SearchParameterSet
	5.5.1.28 SearchArticleParameterSet
	5.5.1.29 Index Construction
	5.5.1.30 Query Syntax
	5.5.1.31 Filter Expression Syntax
	5.5.1.32 TopCatalogItems
	5.5.1.33 VarCodeType
	5.5.1.34 SearchResourceParameterSet

	5.5.2 Faults
	5.5.2.1 CatalogServiceFault

	5.5.3 Operations
	5.5.3.1 getPackageInfo
	5.5.3.2 setLanguages
	5.5.3.3 getLanguages
	5.5.3.4 lookupArticle
	5.5.3.5 searchArticle
	5.5.3.6 getCatalogItem
	5.5.3.7 listCatalogItems
	5.5.3.8 searchCatalogItems
	5.5.3.9 setPreferredIconSize
	5.5.3.10 getPreferredIconSize
	5.5.3.11 getDescriptorIds
	5.5.3.12 getItemDescriptors
	5.5.3.13 getCatalogPath
	5.5.3.14 searchResource

	5.6 Basket Service
	5.6.1 Type Definitions
	5.6.1.1 AddStateCode
	5.6.1.2 ArticleDescription
	5.6.1.3 ArticleDescription
	5.6.1.4 AttachmentMode
	5.6.1.5 BItemId
	5.6.1.6 BasketConfig
	5.6.1.7 BasketItemType
	5.6.1.8 BasketItem
	5.6.1.9 CSArithmeticOperationError
	5.6.1.10 CSConformabilityError
	5.6.1.11 CSCurrencyError
	5.6.1.12 CSErrorCode
	5.6.1.13 CSInvalidValueError
	5.6.1.14 CSItemDataAccessError
	5.6.1.15 CSLineNotFoundError
	5.6.1.16 CSOperationKind
	5.6.1.17 CSUndefinedOperationError
	5.6.1.18 CSValidationError
	5.6.1.19 CSValueKind
	5.6.1.20 ItemProperties
	5.6.1.21 FolderProperties
	5.6.1.22 GetArticleDataOptions
	5.6.1.23 GetArticleFeaturesOptions
	5.6.1.24 GetMultiArticleFeaturesOptions
	5.6.1.25 GetImagesOptions
	5.6.1.26 GetManufacturerInfoOptions
	5.6.1.27 ArticleProperties
	5.6.1.28 PackagingInfo
	5.6.1.29 PartCompositionFailure
	5.6.1.30 TextItemProperties
	5.6.1.31 Value
	5.6.1.32 Quantity
	5.6.1.33 ManufacturerInfo
	5.6.1.34 Money
	5.6.1.35 Percentage
	5.6.1.36 PropertyClass
	5.6.1.37 PropertyType
	5.6.1.38 PropertyValue
	5.6.1.39 Interval
	5.6.1.40 Property
	5.6.1.41 PriceComponent
	5.6.1.42 ArticleData
	5.6.1.43 ArticleFeature
	5.6.1.44 ArticleFeatures
	5.6.1.45 ChoiceList
	5.6.1.46 InsertInfo
	5.6.1.47 ImageInfo
	5.6.1.48 ConfigDependentMediaInfo
	5.6.1.49 ItemSelectionOptions
	5.6.1.50 GetChoiceListOptions
	5.6.1.51 GetAllItemsOptions
	5.6.1.52 DeleteItemsOptions
	5.6.1.53 MoveItemsDirection
	5.6.1.54 MoveItemsResult
	5.6.1.55 RelocateItemsOptions
	5.6.1.56 RelocateItemsResult
	5.6.1.57 OAPRotateObjectAction
	5.6.1.58 OAPTranslateObjectAction
	5.6.1.59 OBKVersionInfo
	5.6.1.60 OperationMode
	5.6.1.61 CopyOptions
	5.6.1.62 PricingProcedure
	5.6.1.63 PricingProcedureLine
	5.6.1.64 PricingProcedureDescription
	5.6.1.65 CalculationLine
	5.6.1.66 CalculationSheet
	5.6.1.67 ItemCalculationSheet
	5.6.1.68 HalfWayRoundingMode
	5.6.1.69 LineInsertMode
	5.6.1.70 LineType
	5.6.1.71 PrintControl
	5.6.1.72 CalculationRule
	5.6.1.73 ConditionType
	5.6.1.74 ConditionClass
	5.6.1.75 ConditionSign
	5.6.1.76 ConditionEditMode
	5.6.1.77 RoundingRule
	5.6.1.78 TaxSchemeDescription
	5.6.1.79 TaxScheme
	5.6.1.80 OrderedTax
	5.6.1.81 TaxCategory
	5.6.1.82 TaxInfo
	5.6.1.83 OFMLUpdateState
	5.6.1.84 UpdateBasketArticleResult
	5.6.1.85 UpdateBasketArticlesOptions
	5.6.1.86 DisplayText(Basket)
	5.6.1.87 ExchangeRate
	5.6.1.88 Vector2
	5.6.1.89 Vector3
	5.6.1.90 Rotation
	5.6.1.91 ComposableGeometryProperties
	5.6.1.92 CondGroupSelectionOptions
	5.6.1.93 ColumnType
	5.6.1.94 BasketItemAttrId
	5.6.1.95 ColumnId
	5.6.1.96 BasketColumn
	5.6.1.97 ItemField
	5.6.1.98 GetItemFieldOptions
	5.6.1.99 PasteOptions
	5.6.1.100 PasteContainerOptions
	5.6.1.101 ItemAppData
	5.6.1.102 OAPAction
	5.6.1.103 OAPActionChoiceAction
	5.6.1.104 OAPArticleSpecMode
	5.6.1.105 OAPPropChangeAction
	5.6.1.106 OAPClientCapability
	5.6.1.107 OAPMediaSource
	5.6.1.108 OAPAttachAreasPlacement
	5.6.1.109 ViewDisplayMode
	5.6.1.110 MergeMode
	5.6.1.111 SetArticleMode
	5.6.1.112 PriceInfo
	5.6.1.113 GetPriceCalculationSheetOptions
	5.6.1.114 ArticleDescriptionMode
	5.6.1.115 Axis
	5.6.1.116 ARSRenderingSetup
	5.6.1.117 BasketViewConfig
	5.6.1.118 DescrType
	5.6.1.119 Dimension
	5.6.1.120 GetArticleDataOptions
	5.6.1.121 InactiveFlag
	5.6.1.122 InactivePositionState
	5.6.1.123 MergeResult
	5.6.1.124 OAPActionContext
	5.6.1.125 OAPActionListItem
	5.6.1.126 OAPActionResult
	5.6.1.127 OAPActionState
	5.6.1.128 OAPArticleData
	5.6.1.129 OAPGeneralInfo
	5.6.1.130 OAPAttachArea
	5.6.1.131 OAPGeometry
	5.6.1.132 OAPPointGeometry
	5.6.1.133 OAPPointListGeometry
	5.6.1.134 OAPPolyLineGeometry
	5.6.1.135 OAPRectangleGeometry
	5.6.1.136 RasterType
	5.6.1.137 OAPDataDefinedPlacement
	5.6.1.138 OAPDeleteObjectAction
	5.6.1.139 OAPMethodCallAction
	5.6.1.140 OAPMethodCallType
	5.6.1.141 OAPObjectCategory
	5.6.1.142 OAPObjectDefinition
	5.6.1.143 OAPPlacement
	5.6.1.144 OAPCreateObjectAction
	5.6.1.145 OAPDataDefinedPlacement
	5.6.1.146 OAPDeleteObjectAction
	5.6.1.147 OAPDimChange
	5.6.1.148 OAPDimChangeAction
	5.6.1.149 OAPDimChange2Action
	5.6.1.150 OAPPropEdit2Action
	5.6.1.151 OAPPropEditAction
	5.6.1.152 OAPPropEditClass
	5.6.1.153 OAPPropEditProp
	5.6.1.154 OAPRasterType
	5.6.1.155 OAPRasterType
	5.6.1.156 OAPSelectObjectAction
	5.6.1.157 OAPShowMediaAction
	5.6.1.158 OAPSymbolSize
	5.6.1.159 PriceInfoElement
	5.6.1.160 SeriesInfo
	5.6.1.161 SetArticleProperties
	5.6.1.162 SetLanguagesMode
	5.6.1.163 SetPropertyValueOptions
	5.6.1.164 TMColumnDef
	5.6.1.165 TMColumnId
	5.6.1.166 TMRow
	5.6.1.167 TMRowDef
	5.6.1.168 TMTable
	5.6.1.169 TMText
	5.6.1.170 TMTextType
	5.6.1.171 BasketViewSortConfig
	5.6.1.172 ColumnSortOrder
	5.6.1.173 SortGroup
	5.6.1.174 SortGroupSelector
	5.6.1.175 CollatorDecomposition
	5.6.1.176 CollatorStrength

	5.6.2 Faults
	5.6.2.1 BasketServiceFault

	5.6.3 Operations
	5.6.3.1 adjustCalculationLineAmount
	5.6.3.2 adjustCalculationLineValue
	5.6.3.3 AdjustConditionValue
	5.6.3.4 setLanguages
	5.6.3.5 getLanguages
	5.6.3.6 setConditionDescription
	5.6.3.7 setCurrency
	5.6.3.8 getCurrency
	5.6.3.9 getTopFolderId
	5.6.3.10 getFatherId
	5.6.3.11 getManufacturerInfo
	5.6.3.12 getSubItemIds
	5.6.3.13 getAllItems
	5.6.3.14 InsertArticleOptions
	5.6.3.15 InsertOCDArticle (deprecated)
	5.6.3.16 insertOFMLArticle
	5.6.3.17 insertUserArticle
	5.6.3.18 insertFolder
	5.6.3.19 insertTextItem
	5.6.3.20 deleteItems
	5.6.3.21 mergeBasketArticles
	5.6.3.22 SplitUpCompositeArticles
	5.6.3.23 moveItems
	5.6.3.24 relocateItems
	5.6.3.25 convertToSetArticle
	5.6.3.26 breakUpSetArticle
	5.6.3.27 collapseSetArticles
	5.6.3.28 expandSetArticles
	5.6.3.29 addToSetArticle
	5.6.3.30 removeFromSetArticle
	5.6.3.31 changeAlternativePositionState
	5.6.3.32 getItemProperties
	5.6.3.33 setItemProperties
	5.6.3.34 getArticleData
	5.6.3.35 getArticleFeatures
	5.6.3.36 getMultiArticleFeatures
	5.6.3.37 getChoiceList
	5.6.3.38 getAllChoiceLists
	5.6.3.39 setPropertyValue
	5.6.3.40 getGeneratedImage
	5.6.3.41 getArticleRenderingSetup
	5.6.3.42 getImages
	5.6.3.43 getExportedGeometry
	5.6.3.44 getConfigDependentMedia
	5.6.3.45 getAllConfigDependentMedia
	5.6.3.46 setBasketAppData
	5.6.3.47 getBasketAppData
	5.6.3.48 setItemAppData
	5.6.3.49 getItemAppData
	5.6.3.50 getMultiItemAppData
	5.6.3.51 copy
	5.6.3.52 paste
	5.6.3.53 pasteContainer
	5.6.3.54 listPricingProcedures
	5.6.3.55 getPricingProcedure
	5.6.3.56 addPriceCalculation
	5.6.3.57 getPriceCalculationSheet
	5.6.3.58 getPriceCalculationSheets
	5.6.3.59 addManualCondition
	5.6.3.60 removeCondition
	5.6.3.61 setConditionAmount
	5.6.3.62 resetConditionAmount
	5.6.3.63 setQuantityRelation
	5.6.3.64 resetQuantityRelation
	5.6.3.65 getConditionTypes
	5.6.3.66 listTaxSchemes
	5.6.3.67 getTaxScheme
	5.6.3.68 getCurrentTaxScheme
	5.6.3.69 selectCurrentTaxScheme
	5.6.3.70 getTaxInformation
	5.6.3.71 setTaxInformation
	5.6.3.72 resetTaxConfiguration
	5.6.3.73 resetTaxScheme
	5.6.3.74 setTaxRate
	5.6.3.75 tmGetTable
	5.6.3.76 tmGetText
	5.6.3.77 tmSetText
	5.6.3.78 tmSetTextVisibility
	5.6.3.79 ResetTaxRate
	5.6.3.80 updateBasketArticles
	5.6.3.81 getReferenceCurrency
	5.6.3.82 getExchangeRates
	5.6.3.83 setExchangeRates
	5.6.3.84 convertToUserArticles
	5.6.3.85 getBasketColumns
	5.6.3.86 removeBasketColumns
	5.6.3.87 addBasketColumns
	5.6.3.88 setBasketColumnProperties
	5.6.3.89 getItemFields
	5.6.3.90 setItemFields
	5.6.3.91 resetItemFields
	5.6.3.92 OapGetArticleData
	5.6.3.93 OapGetInteractors
	5.6.3.94 OAPInteractor
	5.6.3.95 OAPMessageAction
	5.6.3.96 OAPSymbolType
	5.6.3.97 SymbolSize
	5.6.3.98 OAPSymbolDisplay
	5.6.3.99 oapProcessActions
	5.6.3.100 OapGetActionData
	5.6.3.101 OapSetClientCapabilities
	5.6.3.102 GetBasketConfig
	5.6.3.103 changeBasketConfig
	5.6.3.104 getBasketViewConfigs
	5.6.3.105 changeBasketViewConfig
	5.6.3.106 setItemConditionDescription
	5.6.3.107 addBasketView
	5.6.3.108 startOFMLDebugging
	5.6.3.109 stopOFMLDebugging
	5.6.3.110 removeBasketViews

	5.6.4 Image Generation
	5.6.4.1 Differences Between Online Configurator and pCon.basket
	5.6.4.2 Client control of the header Content-Disposition for files in the session cache

	5.7 Project Service
	5.7.1 Type Definitions
	5.7.1.1 ProjectData
	5.7.1.2 ProjectState
	5.7.1.3 ProjectTextType
	5.7.1.4 AddressData
	5.7.1.5 CommAddress
	5.7.1.6 ContactData
	5.7.1.7 AutoSaveOptions
	5.7.1.8 CountryData
	5.7.1.9 DeleteProjectsOptions
	5.7.1.10 DisplayName
	5.7.1.11 FormattedText
	5.7.1.12 ListCompletionsOptions
	5.7.1.13 ListProjectsOptions
	5.7.1.14 Permission
	5.7.1.15 PriceList
	5.7.1.16 ProjectFilter
	5.7.1.17 ProjectFilterAttribute
	5.7.1.18 ProjectFilterDateValue
	5.7.1.19 ProjectFilterDateTimeValue
	5.7.1.20 ProjectFilterNode
	5.7.1.21 ProjectFilterStateValue
	5.7.1.22 ProjectFilterStringValue
	5.7.1.23 ProjectFilterValue
	5.7.1.24 ProjectGroup
	5.7.1.25 ProjectNumberScheme
	5.7.1.26 ProjectSortSpec
	5.7.1.27 ProjectText
	5.7.1.28 SaveProjectOptions
	5.7.1.29 SubdivisionData
	5.7.1.30 AddressType
	5.7.1.31 CommAddrType
	5.7.1.32 TextFormat
	5.7.1.33 ScopeInfo
	5.7.1.34 ContactType
	5.7.1.35 ProjectAttribute
	5.7.1.36 LockingMode
	5.7.1.37 ProjectFilterOperator
	5.7.1.38 AuthMessageType
	5.7.1.39 ProjectState

	5.7.2 Faults
	5.7.3 Operations
	5.7.3.1 saveProject
	5.7.3.2 listProjects
	5.7.3.3 loadProject
	5.7.3.4 closeProjects
	5.7.3.5 getProjectKeys
	5.7.3.6 setCurrentProject
	5.7.3.7 setProjectData
	5.7.3.8 SetProjectText
	5.7.3.9 addPriceList
	5.7.3.10 addProjectGroup
	5.7.3.11 addProjectNumberScheme
	5.7.3.12 authenticateUser
	5.7.3.13 deleteProjects
	5.7.3.14 getAddressData
	5.7.3.15 getContactData
	5.7.3.16 getCountries
	5.7.3.17 getCountrySubdivisions
	5.7.3.18 getPriceLists
	5.7.3.19 getProjectData
	5.7.3.20 getProjectGroups
	5.7.3.21 getProjectNumberSchemes
	5.7.3.22 getProjectTexts
	5.7.3.23 listCompletions
	5.7.3.24 newProject
	5.7.3.25 removeAddressData
	5.7.3.26 removeContactData
	5.7.3.27 removePriceList
	5.7.3.28 removeProjectGroup
	5.7.3.29 removeProjectNumberScheme
	5.7.3.30 setAddressData
	5.7.3.31 setAutoSaveOptions
	5.7.3.32 setContactData
	5.7.3.33 updatePriceList
	5.7.3.34 updateProjectGroup
	5.7.3.35 updateProjectLock
	5.7.3.36 updateProjectNumberScheme

	6 Statistic Event Manager
	7 SSL Setup
	7.1.1 HTTPS Support
	7.1.2 Soap connection via WSDL

